General Relativity and Gravitation

, Volume 2, Issue 3, pp 215–222 | Cite as

Gravitational Fermion interactions

  • John K. Lawrence
Research Articles


The scattering of unpolarized Fermions and scalar mesons by single graviton exchange is considered by means of a Feynman graph type perturbation theory scheme. In the limit of scattering of the Fermions by very heavy mesons, one obtains the cross section for Fermions scattering in a Schwarzschild metric. The result obtained conflicts with an earlier result of Mitskevich. In the limit of scattering of massless Fermions (neutrinos) with massless scalar mesons it is seen, using Weinberg's treatment of soft graviton Bremsstrahlung, that the cosmological red shift of light cannot be explained by interactions of the light with intergalactic neutrinos.


Perturbation Theory Theory Scheme Early Result Differential Geometry Feynman Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeWitt, B. (1967).Phys. Rev.,160, 1113; (1967).Phys. Rev.,162, 1195, 1239.Google Scholar
  2. 2.
    Feynman, R. P. (1963). ‘Lectures on Gravitation’ (mimeographed notes by F. B. Moringo and W. G. Wagner), California Institute of Technology, unpublished.Google Scholar
  3. 3.
    Gupta, S. N. (1952).Proc. Phys. Soc.,A65, 161, 608.Google Scholar
  4. 4.
    Weber, J. and Hinds, G. (1962).Phys. Rev.,128, 2414.Google Scholar
  5. 5.
    Kibble, T. W. B. (1965). The Quantum Theory of Gravitation inHigh Energy Physics and Elementary Particles, IAEA Vienna.Google Scholar
  6. 6.
    Halpern, L. (1962).Nuovo Cim.,10, 1239.Google Scholar
  7. 7.
    Boccaletti, B., de Sabbata, V., Gualdi, C. and Fortini, P. (1967).Nuovo Cim.,48A, 58; (1969).Nuovo Cim.,60B, 320.Google Scholar
  8. 8.
    Weinberg, S. (1964).Physics Letters,9, 357; (1965).Phys. Rev.,140, B516.Google Scholar
  9. 9.
    Lawrence, J. K. (1970).Acta Phys. Austr.,31, 1.Google Scholar
  10. 10.
    Mitskevich, N. V. (1958).Journ. Exptl. Theor. Phys. (USSR),34, 1656;Trans. (1958).Soviet Physics (JETP),7, 1139.Google Scholar
  11. 11.
    Lawrence, J. K. (1967). Thesis, Northeastern University, Boston, Massachusetts, unpublished.Google Scholar
  12. 12.
    Cooke, C. (1964). Thesis, University of North Carolina, Chapel Hill, N.C., unpublished.Google Scholar
  13. 13.
    Gross, D. and Jackiw, R. (1968).Phys. Rev.,166, 1287.Google Scholar
  14. 14.
    Bjorken, J. D. and Drell, S. D. (1964).Relativistic Quantum Mechanics, p. 103 ff., McGraw-Hill, N.Y.Google Scholar
  15. 15.
    Sandage, A. (1958).Astrophys. J.,127, 513.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1971

Authors and Affiliations

  • John K. Lawrence
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of ViennaAustria

Personalised recommendations