General Relativity and Gravitation

, Volume 25, Issue 11, pp 1139–1158 | Cite as

A Finsler generalisation of Einstein's vacuum field equations

  • Solange F. Rutz
Research Articles


This paper gives a generalisation of Einstein's vacuum field equations for Finsler metrics. The given generalised field equation reproduces the Einstein equations for Riemannian metrics, and also admits non-Riemannian solutions. This is shown in detail by deriving a first order Finsler perturbation, solving the new field equation, of the Schwarzschild metric. This perturbation turns out to be time independent. The effects of the perturbation on the three Classical Tests of General Relativity are derived, and used to give limits on the size of the perturbation parameter involved.


General Relativity Field Equation Differential Geometry Einstein Equation Perturbation Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Riemann, G. F. B. (1854). “Über die Hypothesen welche der Geometrie zu Grunde liegen,” Habilitation thesis, University of Göttingen.Google Scholar
  2. 2.
    Finsler, P. (1918). “Über Kurven und Flächen in Allgemeinen Räumen,” Dissertation, University of Göttingen.Google Scholar
  3. 3.
    Cartan, É. (1934).Les Espaces de Finsler (Actualités 79, Paris).Google Scholar
  4. 4.
    Berwald, L. (1947).Ann. Math. (2)48, 755.Google Scholar
  5. 5.
    Rund, H. (1959).The Differential Geometry of Finsler Spaces (Springer-Verlag, Berlin).Google Scholar
  6. 6.
    Matsumoto, M. (1986).Foundations of Finsler Geometry and Special Finsler Spaces (Kaiseisha Press, Shigaken).Google Scholar
  7. 7.
    Kilmister, D. A., and Stephenson, G. (1954).Nuovo Cimento 11, Suppl. 91, 118.Google Scholar
  8. 8.
    Asanov, G. S. (1979).Nuovo Cimento 49, 221; Bogoslovsky, G. Yu. (1977).Nuovo Cimento 40B, 99,116;id. (1992).Class. Quant. Grav. 9, 569; Ishikawa, H. (1981).J. Math. Phys. 22, 995; Matsumoto, M. (1975).Rep. Math. Phys. 8 103; Takano, Y. (1974).Lett. Nuovo Cimento 10, 747.Google Scholar
  9. 9.
    Roxburgh, I. W. (1992).Gen. Rel. Grav. 24, 419; Roxburgh, I. W., and Tavakol, R. K. (1979).Gen. Ret. Grav. 10, 307.Google Scholar
  10. 10.
    Tavakol, R. K., and Van der Bergh, N. (1986).Gen. Rel. Grav. 18, 849.Google Scholar
  11. 11.
    Pirani, F. A. E. (1965). In Lectures on General Relativity (Brandeis Summer Inst. in Theoretical Physics 1964) S. Deser and K. W. Ford, eds. (Prentice-Hall, Englewood Cliffs, N.J.), vol. 1, lecture 2.Google Scholar
  12. 12.
    Carathéodory, C. (1935).Variationsrechnung und partielle Differentialgleichungen erster Ordnung (Teubner Press, Leipzig).Google Scholar
  13. 13.
    Rutz, S. F., McCarthy, P. J. (1993).Gen. Rel. Grav. 25, 179.Google Scholar
  14. 14.
    Hearn, A. (1991). REDUCEUser's Manual, version 3.4 (Rand Corporation, Santa Monica, California).Google Scholar
  15. 15.
    Rutz, S. F. (1993). “Symmetry and Gravity in Finsler Spaces”, PhD thesis, Queen Mary & Westfield College, University of London.Google Scholar
  16. 16.
    McCarthy, P. J., Rutz, S. F. (1993).Gen. Rel. Grav. 25, 589.Google Scholar
  17. 17.
    Landau, L. D., and Lifshitz, E. M. (1962).The Classical Theory of Fields (2nd. revised ed., Pergamon, Oxford).Google Scholar
  18. 18.
    Weinberg, S. (1972).Gravitation and Cosmology (Wiley, New York).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Solange F. Rutz
    • 1
  1. 1.School of Mathematical SciencesQueen Mary and Westfield CollegeLondonUK

Personalised recommendations