Advertisement

General Relativity and Gravitation

, Volume 7, Issue 2, pp 177–198 | Cite as

Killing vectors in empty space algebraically special metrics. I

Research Articles

Abstract

Empty space algebraically special metrics possessing an expanding degenerate principal null vector and a Killing vector are investigated. It is shown that the Killing vector falls into one of two classes. The class containing all asymptotically timelike Killing vectors is investigated in detail and the associated metrics are identified. Several theorems concerning these metrics are given, among which is a proof that if the metric is regular and possesses an asymptotically timelike Killing vector, then it must be typeD. In addition some relations between Killing vectors in general spaces are developed along with a set of tetrad symmetry equations stronger than those of Killing.

Keywords

Empty Space Killing Vector Weyl Tensor Riemann Tensor Asymptotic Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kerr, R. P. (1963).Phys. Rev. Lett.,11, 237.MATHCrossRefADSMathSciNetGoogle Scholar
  2. 1a.
    Kerr, R. P., and Debney, G. C. (1970).J. Math. Phys.,11, 2807.MATHCrossRefADSMathSciNetGoogle Scholar
  3. 2.
    Newman, E. T., and Tamburino, L. (1962).J. Math. Phys.,3, 902.CrossRefADSMathSciNetGoogle Scholar
  4. 2a.
    Newman, E. T., Tamburino, L., and Unti, J. (1963).ibid.,4, 915.MATHCrossRefADSMathSciNetGoogle Scholar
  5. 2b.
    Forster, J., and Newman, E. T. (1967).ibid.,8, 189.CrossRefADSGoogle Scholar
  6. 3.
    Robinson, I., and Trautmann, S. (1962).Proc. Roy. Soc.,A265, 462.ADSGoogle Scholar
  7. 4.
    Robinson, I., Robinson, J., and Zund, J. (1969).J. Math. Mech.,18, 881.MATHMathSciNetGoogle Scholar
  8. 4a.
    Robinson, I., and Robinson, J. (1969).Int. J. Theor. Phys.,2, 231.CrossRefGoogle Scholar
  9. 5.
    Debever, R. (1964).Cah. Phys.,168, 303; Cahen, M., Debever, R., Defrise, L. (1967). J. Math. Mech.,16, 761.MathSciNetGoogle Scholar
  10. 6.
    Kinnersiey, W. (1969).J. Math. Phys.,10, 1195.CrossRefADSGoogle Scholar
  11. 7.
    Derry, L., Isaacson, R., Winicour, J. (1969).Phys. Rev.,185, 1647.CrossRefADSMathSciNetGoogle Scholar
  12. 8.
    Geroch, R., Held, A., and Penrose, R. (1973).J. Math. Phys.,14, 874.MATHCrossRefADSMathSciNetGoogle Scholar
  13. 9.
    Newman, E. T., and Penrose, R. (1962).J. Math. Phys.,3, 566.CrossRefADSMathSciNetGoogle Scholar
  14. 10.
    Held, A. (1974).Commun. Math. Phys.,37, 311.CrossRefADSMathSciNetGoogle Scholar
  15. 11.
    Held, A. (1974).Commun. Math. Phys.,44, 211.CrossRefADSMathSciNetGoogle Scholar
  16. 12.
    Ehlers, J., and Kundt, W. (1962) inGravitation: An Introduction to Current Research, ed. Witten, L. (John Wiley & Sons, Inc., New York); Kinnersley, W., and Walker, M. (1970).Phys. Rev.,D2, 1359.Google Scholar
  17. 13.
    Newman, E. T., and Penrose, R. Zn(1966).J. Math. Phys.,7, 863.CrossRefADSMathSciNetGoogle Scholar
  18. 14.
    Goldberg, J. N., et al. (1967).J. Math. Phys.,8, 2155.MATHCrossRefADSGoogle Scholar
  19. 15.
    Eisenhart, L. P. (1950).Riemannian Geometry (Princeton University Press, Princeton, N.J.), p. 85.Google Scholar
  20. 16.
    Misner, C. W. (1963).J. Math. Phys.,4, 924.CrossRefADSMathSciNetGoogle Scholar
  21. 17.
    Lind, R., (1974).Gen. Rel. Grav.,5, 25.CrossRefADSMathSciNetGoogle Scholar
  22. 18.
    Held, A. (1974).Lett. Nuovo Cimento,11, 545.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. Held
    • 1
  1. 1.Institut für Theoretische PhysikUniversität BernBernSwitzerland

Personalised recommendations