Skip to main content
Log in

Neutrino cosmology

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Cosmological data are reviewed questioning whether the universe may be open and dominated by neutrinos and gravitons rather than by baryons. The thermal history of the Lepton Era is investigated incorporating the effects of neutral currents, additional neutrinos, and a small neutrino mass. In the canonical version of Big Bang cosmology (equal numbers of neutrinos and antineutrinos), the neutrino number and energy density is, like that of photons, gravitationally insignificant unless the neutrino has a small mass (∼10 eV). The neutrino sea can be cosmologically significant if it is degenerate (so that the net leptonic or muonic charge is nonzero) with∼7×10 5 neutrinos (or antineutrinos) per cm.3 This density homogeneously spread out is still so low that even the most energetic cosmic ray protons will not be stopped, even if neutral currents exist with the usual weak strength. If these degenerate neutrinos have a small mass (∼0.5 eV), they will condense into degenerate neutrino superstars of the size and mass of galactic clusters. If neutral currents make the (ev) (ev) coupling five times greater than what it is in V — A theory, nucleosynthesis commences a little earlier than conventionally assumed. This increases the cosmological He4 abundance predicted only slightly from Y= 0.27 to Y= 0.29. An appendix reviews the effect of neutral currents on neutrino processes in stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Graaf, T. (1971).Proceedings of the Cortina Meeting on Astrophysical Aspects of the Weak Interactions, (Roma); also (1972)in Proceedings 1972 Conference on Neutrinos (Technoinform, Budapest).

  2. Some general references on cosmology are Peebles, J. (1971).Physical Cosmology, (Princeton University Press, Princeton, New Jersey) and Weinberg S. (1972).Gravitation and Cosmology, (Wiley, New York).

    Google Scholar 

  3. Sandage, A. (1972). Hale Observatories Report (1973).Ap. J.,183.

  4. Oort, J. (1958). inLa Structure et l'évolution de l'universe (Brussels).

  5. Ostriker, J. P., and Peebles, P. J. E. (1973).Ap. J.,186, 467.

    Google Scholar 

  6. Tinsley, B. (1972).Ap. J.,178, 319.

    Google Scholar 

  7. Schvartzman, V. F. (1969).Sov. Phys. JETP Lett.,9, 184; Sunyaev, R. A., and Zeldo-vich, Ya. B. (1969).Comm. Astrophys. Space Sci.,1, 159.

    Google Scholar 

  8. Fowler, W. A. (1971). inProceedings of the Cortina Meeting on Astrophysical Aspects of the Weak Interactions (Roma).

  9. Cowsik, R., and McLelland, J. (1972).Phys. Rev. Lett.,29, 609.

    Google Scholar 

  10. Weinberg, S. (1962).Phys. Rev.,128, 1457.

    Google Scholar 

  11. Wagoner, R. V., Fowler, W. A., and Hoyle, F. (1967).Ap. J. 148, 3.

    Google Scholar 

  12. Cowsik, R., and McClelland, J. (1973).Ap. J.,180, 7.

    Google Scholar 

  13. Marx, G., and Szalay, A. S. (1972). inTopical Seminar on Weak Interactions, (Trieste), IO/73/71.

  14. Markov, M. A. (1964).Phys. Lett.,10, 122.

    Google Scholar 

  15. Rood, H. J., Page, T. L., Kintner, E. C., and King, I. R. (1972).Ap. J.,175, 627.

    Google Scholar 

  16. Freedman, D. Z. (1974).Phys. Rev. D,9, 1389.

    Google Scholar 

  17. Dicus, D. (1972).Phys. Rev. D,6, 941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the U.S.A.E.C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bludman, S.A. Neutrino cosmology. Gen Relat Gravit 7, 569–582 (1976). https://doi.org/10.1007/BF00763406

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00763406

Keywords

Navigation