Skip to main content
Log in

Interdependence of H+ and K+ fluxes during the Ca2+-pumping activity of sarcoplasmic reticulum vesicles

  • Original Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The release of H+ during the oxalate-supported Ca2+ uptake in sarcoplasmic reticulum vesicles is kinetically coincident with the initial phase of Ca2+ accumulation. The Ca2+ uptake is increased and the H+ release is decreased in the presence of KCl and other monovalent chloride salts as expected for a H+-monovalent cation exchange. The functioning of the Ca2+-pump is disturbed by the presence of potassium gluconate and, to a lesser extent, of choline chloride. These salts do not inhibit the ATPase activity of Ca2+-permeable vesicles, suggesting a charge imbalance inhibition which is specially relevant in the case of gluconate. Therefore, K+, and also Cl, appear to be involved in secondary fluxes during the active accumulation of Ca2+. The microsomal preparation seems homogeneous with respect to the K+-channel, showing an apparent rate constant for K+ release of approximately 25 s−1 measured with the aid of86Rb+ tracer under equilibrium conditions. A Rb+ efflux, sensitive to Ca2+-ionophore, can be also detected during the active accumulation of Ca2+. The experimental data suggest that both monovalent cations and anions are involved in a charge compensation during the Ca2+ uptake and H+ release. Fluxes of these highly permeable ions would contribute to cancel the formation of a resting membrane potential through the sarcoplasmic reticulum membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chiesi, M., and Inesi, G. (1980).Biochemistry 19, 2912–2918.

    Google Scholar 

  • Dupont, Y., and Moutin, M. J. (1987).Methods Enzymol. 148, 675–683.

    Google Scholar 

  • Ebashi, S., and Endo, M. (1968).Prog. Biophys. Mol. Biol. 18, 125–183.

    Google Scholar 

  • Eletr, S., and Inesi, G. (1972).Biochim. Biophys. Acta 282, 174–179.

    Google Scholar 

  • Fleischer, S., and Inui, M. (1989).Annu. Rev. Biophys. Biophys. Chem. 18, 333–364.

    Google Scholar 

  • Garcia, A. M., and Miller, C. (1984).J. Gen. Physiol. 83, 819–839.

    Google Scholar 

  • Ide, T., Morita, T., Kawasaki, T., Taguchi, T., and Kasai, M. (1991).Biochim. Biophys. Acta 1067, 213–220.

    Google Scholar 

  • Inesi, G., and Scarpa, A. (1972).Biochemistry 11, 356–359.

    Google Scholar 

  • Inesi, G., Lewis, D., Nikic, D., Hussain, A., and Kirtley, M. E. (1992) InAdvances in Enzymology and Related Areas Molecular of Biology (Meister, A., ed.), Vol. 65, Wiley, New York, pp. 185–215.

    Google Scholar 

  • Kometani, T., and Kasai, M. (1978).J. Membr. Biol. 41, 295–308.

    Google Scholar 

  • Levy, D., Seigneuret, M., Bluzat, A., and Rigaud, J. L. (1990).J. Biol. Chem. 265, 19524–19534.

    Google Scholar 

  • Lin, T., and Morales, M. F. (1977).Anal. Biochem. 77, 10–17.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.

    Google Scholar 

  • MacLennan, D. H. (1990).Biophys. J. 58, 1355–1365.

    Google Scholar 

  • Madeira, V. M. C. (1978).Arch. Biochem. Biophys. 185, 316–325.

    Google Scholar 

  • Madeira, V. M. C. (1984).Biochim. Biophys. Acta 769, 284–290.

    Google Scholar 

  • McKinley, D., and Meissner, G. (1978).J. Membr. Biol. 44, 159–186.

    Google Scholar 

  • Meissner, G. (1975).Biochim. Biophys. Acta 389, 51–68.

    Google Scholar 

  • Meissner, G. (1981).J. Biol. Chem. 256, 636–643.

    Google Scholar 

  • Meissner, G., and McKinley, D. (1976).J. Membr. Biol. 30, 79–98.

    Google Scholar 

  • Meissner, G., and Young, R. C. (1980).J. Biol. Chem. 255, 6814–6819.

    Google Scholar 

  • Orlowski, S., and Champeil, P. (1991).Biochemistry 30, 352–361.

    Google Scholar 

  • Riollet, S., and Champeil, P. (1987).Anal. Biochem. 162, 160–162.

    Google Scholar 

  • Rousseau, E., Roberson, M., and Meissner, G. (1988).Eur. Biophys. J. 16, 143–151.

    Google Scholar 

  • Somlyo, A. V., Shuman, H., and Somlyo, A. P. (1977).Nature (London)268, 556–558.

    Google Scholar 

  • Tanifuji, M., Sakabe, M., and Kasai, M. (1987).J. Membr. Biol. 99, 103–111.

    Google Scholar 

  • Yamaguchi, M., and Watanabe, T. (1988).Methods Enzymol. 157, 233–240.

    Google Scholar 

  • Yu, X., Carroll, S., Rigaud, J. L., and Inesi, G. (1993).Biophys. J. 64, 1232–1242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soler, F., Sanchez-Migallon, P., Gomez-Fernandez, J.C. et al. Interdependence of H+ and K+ fluxes during the Ca2+-pumping activity of sarcoplasmic reticulum vesicles. J Bioenerg Biomembr 26, 127–136 (1994). https://doi.org/10.1007/BF00763224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00763224

Key words

Navigation