Skip to main content
Log in

Evidence that the intrinsic membrance protein LHCII in thylakoids is necessary for maintaining localized\(\Delta \tilde \mu _{H^ + } \) energy coupling

  • Original Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

This work tested the hypothesis that thylakoid localized proton-binding domains, suggested to be involved in localized\(\Delta \tilde \mu _{H^ + } \)-driven ATP formation, are maintained with the involvement of several membrane proteins, including the LHCII (Laszlo, J. A., Baker, G. M., and Dilley, R. A. (1984) Biochim. Biophys. Acta 764, 160–169), which comprises about 50% of the total thylakoid protein. The concept we have in mind is that several membrane proteins cooperate to shield a localized proton diffusion pathway from direct contact with the lumen, thus providing a physical barrier to H+ equilibration between the sequestered domains and the lumen. A barely mutant,chlorina f 2, that lacks Chl b and does not accumulate some of the LHCII proteins, was tested for its capacity to carry out localized-proton gradient-dependent ATP formation. Two previously developed assays permit clear discrimination between localized and delocalized\(\Delta \tilde \mu _{H^ + } \) gradient-driven ATP formation. Those assays include the effect of a permeable buffer, pyridine, on the number of single-turnover flashes needed to reach the energetic threshold for ATP formation and the more recently developed assay for lumen pH using 8-hydroxy-1,3,6-pyrene trisulfonic acid as a lumenally loaded pH-sensitive fluorescent probe. By those two criteria, the wild-type barley thylakoids revealed either a localized or a delocalized energy coupling mode under low- or high-salt storage conditions, respectively. Addition of Ca++ to the high-salt storage medium caused those thylakoids to maintain a localized energy-coupling response, as previously observed for pea thylakoids. In contrast, thechlorina f 2 mutant thylakoids had an active delocalized energy coupling activity but did not show localized\(\Delta \tilde \mu _{H^ + } \) energy coupling under any conditions, and added Ca++ to the thylakoid storage medium did not alter the delocalized energy coupling mode. One interpretation of the results is that the absence of the LHCII polypeptides produces a “leaky” pathway for protons which allows the\(\Delta \tilde \mu _{H^ + } \) gradient to equilibrate with the lumen under all conditions. Another interpretation is possible but seems less likely, that being that the absence of the LHCII polypeptides in some way causes the proposed Ca++ -gated H+ flux site on the membrane sector (CF0) of the energy coupling complex to lose its gating function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allnutt, F. C. T., Atta-Asafo-Adjei, E., and Dilley, R. A. (1989).J. Bioenerg. Biomembr. 21, 535–551.

    Google Scholar 

  • Baker, G., Bhatnagar, D., and Dilley, R. A. (1981).Biochemistry 20, 2307–2315.

    Google Scholar 

  • Beard, W. A., and Dilley, R. A. (1988).J. Bioenerg. Biomembr. 20, 129–154.

    Google Scholar 

  • Boardman, N. K., and Highkin, H. R. (1966).Biochim. Biophys. Acta 126, 189–199.

    Google Scholar 

  • Burke, J. J., Steinback, K. E., and Arntzen, C. J. (1979).Plant Physiol. 63, 237–243.

    Google Scholar 

  • Chiang, G., and Dilley, R. A. (1987).Biochemistry,26, 4911–4916.

    Google Scholar 

  • Chiang, G., Wooten, D., and Dilley, R. A. (1992).Biochemistry 31, 5808–5819.

    Google Scholar 

  • Davis, D. J., and Gross, E. L. (1975).Biochim. Biophys. Acta 387, 557–567.

    Google Scholar 

  • Dilley, R. A. (1991).Curr. Top. Bioenerg. 16, 265–318.

    Google Scholar 

  • Dilley, R. A., Theg, S. M., and Beard, W. A. (1987).Annu. Rev. Plant Physiol. 38, 347–389.

    Google Scholar 

  • Goodchild, D. J., Highkin, H. R., and Boardman, N. K. (1966).Exp. Cell Res. 43, 684–688.

    Google Scholar 

  • Graan, T., Flores, S., and Ort, D. R. (1981). InEnergy Coupling in Photosynthesis (Selman, B. R., and Selman-Reimer, S., eds.),Developments in Biochemistry, Vol. 20, Elsevier North-Holland, New York, pp. 25–34.

    Google Scholar 

  • Gutman, M., and Nachliel, E. (1990).Biochim. Biophys. Acta 1015, 391–414.

    Google Scholar 

  • Hangarter, R. P., Jones, R. W., Ort, D. R., and Whitmarsh, J. (1987).Biochim. Biophys. Acta 890, 106–115.

    Google Scholar 

  • Horner, R. D., and Moudrianakis, E. N. (1986).J. Biol. Chem. 261, 13408–13414.

    Google Scholar 

  • Izawa, S., and Pan R. L. (1978).Biochem. Biophys. Res. Commun. 83, 1171–1177.

    Google Scholar 

  • Jahns, P., and Junge, W. (1990).Eur. J. Biochem. 193, 731–736.

    Google Scholar 

  • Jahns, P., Polle, A., and Junge, W. (1988).EMBO J. 7, 589–594.

    Google Scholar 

  • Johnson, J. D., Pfister, V. R., and Homann, P. H. (1983).Biochim. Biophys. Acta 723, 256–265.

    Google Scholar 

  • Karlin-Neumann, G. A., Kohorn, B. D., Thornber, J. P., and Tobin, E. M. (1985).J. Mol. Appl. Genet. 3, 45–61.

    Google Scholar 

  • Kühlbrandt, W., and Wang, D. N. (1991).Nature (London)350, 130–134.

    Google Scholar 

  • Laasch, H. (1992).Z. Naturforsch. 47c, 717–725.

    Google Scholar 

  • Laszlo, J. A., Baker, G. M., and Dilley, R. A. (1984).Biochim. Biophys. Acta 764, 160–169.

    Google Scholar 

  • Machold, O., Simpson, D. J., and Møller, B. L. (1979).Carlsberg Res. Commun. 44, 235–254.

    Google Scholar 

  • Nagle, J. F., and Dilley, R. A. (1986).J. Bioenerg. Biomembr. 18, 55–64.

    Google Scholar 

  • Ouijja, A., Farineau, N., Cantrel, C., and Guillot-Salomon, T. (1988).Biochim. Biophys. Acta 932, 97–106.

    Google Scholar 

  • Peter, G. F., and Thornber, J. P. (1991).J. Biol. Chem. 266, 16745–16754.

    Google Scholar 

  • Pfister, V. R., and Homann, P. H. (1986).Arch. Biochem. Biophys. 246, 525–530.

    Google Scholar 

  • Pfündel, E. E., and Dilley, R. A. (1993).Plant Physiol.,101, 65–71.

    Google Scholar 

  • Pick, U., Weiss, M., and Rottenberg, H. (1987).Biochemistry 26, 8295–8302.

    Google Scholar 

  • Prochaska, L. J., and Dilley, R. A. (1978).Arch. Biochem. Biophys. 187, 61–71.

    Google Scholar 

  • Prochaska, L. J., and Gross, E. L. (1977).J. Membr. Biol. 36, 13–32.

    Google Scholar 

  • Renganathan, M., Pfündel, E. E., and Dilley, R. A. (1993).Biochim. Biophys. Acta 1142, 277–292.

    Google Scholar 

  • Ruban, A. V., Walters, R. G., and Horton, P. (1992).FEBS Lett. 309, 175–179.

    Google Scholar 

  • Ryie, I. J. (1983).Eur. J. Biochem. 131, 149–155.

    Google Scholar 

  • Sigalat, C., Haraux, F., de Kouchkovsky, F., Hung, S. P. N., and de Kouchkovsky, Y. (1985).Biochim. Biophys. Acta 809, 403–413.

    Google Scholar 

  • Simpson, D. J. (1979).Carlsberg Res. Commun. 44, 305–336.

    Google Scholar 

  • Staehelin, L. A., and Arntzen, C. J. (1983).J. Cell Biol. 97, 1327–1337.

    Google Scholar 

  • Tandy, N., Bhatnagar, D., Hermodson, M. A., and Dilley, R. A. (1982).J. Biol. Chem. 257, 4301–4307.

    Google Scholar 

  • Theg, S. M., Johnson, J. D., and Homann, P. H. (1982).FEBS Lett. 145, 25–29.

    Google Scholar 

  • Theg, S. M., Chiang, G. G., and Dilley, R. A. (1988).J. Biol. Chem. 263, 673–681.

    Google Scholar 

  • White, M. J., and Green, B. R. (1988).Photosynth. Res. 15, 195–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renganathan, M., Dilley, R.A. Evidence that the intrinsic membrance protein LHCII in thylakoids is necessary for maintaining localized\(\Delta \tilde \mu _{H^ + } \) energy coupling. J Bioenerg Biomembr 26, 117–125 (1994). https://doi.org/10.1007/BF00763223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00763223

Key words

Navigation