Journal of Bioenergetics and Biomembranes

, Volume 22, Issue 3, pp 337–351 | Cite as

SecB protein: A cytosolic export factor that associates with nascent exported proteins

  • Carol A. Kumamoto


Soluble factors participate in protein translocation across a variety of biological membranes. TheEscherichia coli soluble protein SecB (the product of thesecB gene) is involved in the export of periplasmic and outer membrane proteins. The isolation ofsecB mutations permitted the demonstration that SecB is required for rapid and efficient export of certain proteins. Consistent with the results of these genetic studies, purified SecB has been shown to stimulate protein translocation acrossE. coli inner membrane vesiclesin vitro. This article presents a review of these past studies of SecB, speculation on the role of SecB in protein translocation, and a comparison of SecB and other factors, trigger factor and GroEL.

Key Words

Protein translocation secB mutants chaperone proteins translocation competence trigger factor GroEL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bochkareva, E. S., Lissin, N. M., and Girshovich, A. S. (1988).Nature (London)336, 254–257.Google Scholar
  2. Chirico, W. J., Waters, M. G., and Blobel, G. (1988).Nature (London)332, 805–810.Google Scholar
  3. Clark, D., Lightner, V., Edgar, R., Modrich, P., Cronan, J. E., Jr., and Bell, R. M. (1980).J. Biol. Chem. 255, 714–717.Google Scholar
  4. Collier, D. N., Bankaitis, V. A., Weiss, J. B., and Bassford, P. J., Jr. (1988).Cell 53, 273–283.Google Scholar
  5. Crooke, E., and Wickner, W. (1987).Proc. Natl. Acad. Sci. USA 84, 5216–5220.Google Scholar
  6. Crooke, E., Brundage, L., Rice, M., and Wickner, W. (1988).EMBO J. 7, 1831–1835.Google Scholar
  7. Deshaies, R. J., Koch, B. D., Werner-Washburne, M., Craig, E. A., and Schekman, R. (1988).Nature (London)332, 800–805.Google Scholar
  8. Eilers, M., and Schatz, G. (1986).Nature (London)322, 228–232.Google Scholar
  9. Fayet, O., Ziegelhoffer, T., and Georgopoulos, C. (1989).J. Bacteriol. 171, 1379–1385.Google Scholar
  10. Friedman, D. I., Olson, E. R., Tilly, K., Georgopoulos, C., Herskowitz, I., and Banuett, F. (1984).Microbiol. Rev. 48, 299–325.Google Scholar
  11. Gannon, P. M., Li, P., and Kumamoto, C. A. (1989).J. Bacteriol. 171, 813–818.Google Scholar
  12. Hemmingsen, S. M., Woolford, C., van der Vies, S. M., Tilly, K., Dennis, D. T., Georgopoulos, C. P., Hendrix, R. W., and Ellis, R. J. (1988).Nature (London)333, 330–334.Google Scholar
  13. Isberg, R. R., Lazaar, A. L., and Syvanen, M. (1982).Cell. 30, 883–892.Google Scholar
  14. Josefsson, L.-G., and Randall, L. L. (1981).Cell 25, 151–157.Google Scholar
  15. Kaiser, C. A., Preuss, D., Grisafi, P., and Botstein, D. (1987).Science 235, 312–317.Google Scholar
  16. Kleckner, N., Roth, J., and Botstein, D. (1977).J. Mol. Biol. 116, 125–159.Google Scholar
  17. Kumamoto, C. A. (1989).Proc. Nat. Acad. Sci. USA 86, 5320–5324.Google Scholar
  18. Kumamoto, C. A., and Beckwith, J. (1983).J. Bacteriol. 154, 253–260.Google Scholar
  19. Kumamoto, C. A., and Beckwith, J. (1985).J. Bacteriol. 163, 267–274.Google Scholar
  20. Kumamoto, C. A., and Gannon, P. M. (1988).J. Biol. Chem. 263, 11554–11558.Google Scholar
  21. Kumamoto, C. A., and Nault, A. K. (1989).Gene 75, 167–175.Google Scholar
  22. Kumamoto, C. A., and Chen, L., Fandl, J., and Tai, P. C. (1989).J. Biol. Chem. 264, 2242–2249.Google Scholar
  23. Kusukawa, N., Yura, T., Ueguchi, C., Akiyama, Y., and Ito, K. (1989).EMBO J. 8, 3517–3521.Google Scholar
  24. Laminet, A. A., and Pluckthun, A. (1989).EMBO J. 8, 1469–1477.Google Scholar
  25. Lecker, S., Lill, R., Ziegelhoffer, T., Georgopoulos, C., Bassford, P. J., Jr., Kumamoto, C. A., and Wickner, W. (1989).EMBO J. 8, 2703–2709.Google Scholar
  26. Lill, R., Crooke, E., Guthrie, B., and Wickner, W. (1988).Cell 54, 1013–1018.Google Scholar
  27. Liu, G., Topping, T. B., Cover, W. H., and Randall, L. L. (1988).J. Biol. Chem. 263, 14790–14793.Google Scholar
  28. Liu, G., Topping, T. B., and Randall, L. L. (1989).Proc. Natl. Acad. Sci. USA 86, 9213–9217.Google Scholar
  29. Meyer, D. I., Krause, E., and Dobberstein, B. (1982).Nature (London)297, 647–650.Google Scholar
  30. Muller, M., and Blobel, G. (1984).Proc. Natl. Acad. Sci. USA 81, 7737–7741.Google Scholar
  31. Oliver, D. B., and Beckwith, J. (1981).Cell 25, 765–772.Google Scholar
  32. Oliver, D., Kumamoto, C., Quinlan, M., and Beckwith, J. (1982).Ann. Microbiol. (Inst. Pasteur) 133A, 105–110.Google Scholar
  33. Park, S., Liu, G., Topping, T. B., Cover, W. H., and Randall, L. L. (1988).Science 239, 1033–1035.Google Scholar
  34. Randall, L. L., and Hardy, S. J. S. (1986).Cell 46, 921–928.Google Scholar
  35. Randall, L. L., and Hardy, S. J. S. (1989).Science 243, 1156–1159.Google Scholar
  36. Talmadge, K., Stahl, S., and Gilbert, W. (1980).Proc. Nat. Acad. Sci. USA 77, 3369–3373.Google Scholar
  37. Trun, N. J., Stader, J., Lupas, A., Kumamoto, C., and Silhavy, T. J. (1988).J. Bacteriol. 170, 5928–5930.Google Scholar
  38. von Heijne, G. (1985).J. Mol. Biol. 184, 99–105.Google Scholar
  39. Walter, P., Gilmore, R., and Blobel, G. (1984).Cell 38, 5–8.Google Scholar
  40. Watanabe, M., and Blobel, G. (1989a).Proc. Natl. Acad. Sci. USA 86, 2728–2732.Google Scholar
  41. Watanabe, M., and Blobel, G. (1989b).Cell 58, 695–705.Google Scholar
  42. Weiss, J. B., Ray, P. H., and Bassford, P. J., Jr. (1988).Proc. Natnl. Acad. Sci. USA 85, 8978–8982.Google Scholar
  43. Weng, Q., Chen, L., and Tai, P. C. (1988).J. Bacteriol. 170, 126–131.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Carol A. Kumamoto
    • 1
  1. 1.Departments of Physiology and Molecular Biology-MicrobiologyTufts University School of MedicineBoston

Personalised recommendations