Skip to main content
Log in

Biophysical studies of signal peptides: Implications for signal sequence functions and the involvement of lipid in protein export

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

This review discusses efforts to understand the mode of action of signal sequences by biophysical study of synthetic peptides corresponding to these protein localization signals. On the basis of reports from several laboratories, it is now clear that signal peptides may adopt a variety of conformations, depending on their local environment. In membrane-mimetic systems like detergent micelles or lipid vesicles, they have a high tendency to form α helices. Ability to take up a helical conformation appears to be required at some point in the function of a signal sequence, since some peptides corresponding to export-defective signal sequences display reduced helical potential. By contrast, functional signal sequences share a high capacity to adopt α helices. High affinity for organized lipid assemblies, like monolayers or vesicles, is also a property of functional signal sequences. This correlation suggests a role for direct interaction of signal sequences with the lipids of the cytoplasmic membranein vivo. Supporting this role are studies of the influence of signal peptides on lipid structure, which reveal an ability of these peptides to pertub lipid packing and to alter the phase state of the lipids. Insertion of the signal sequencein vivo could substantially reduce the barrier for translocation of the mature chain. Lastly, synthetic signal peptides have been added to native membranes and found to inhibit translocation of precursor proteins. This approach bridges the biophysical and the biochemical aspects of protein export and promises to shed light on the functional correlates of the properties and interactions observed in model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austen, B. M., and Ridd, D. H. (1981)Biochem. Soc. Symp. 46, 235–258.

    Google Scholar 

  • Austen, B. M., Hermon-Taylor, J., Kaderbhai, M. A., and Ridd, D. H. (1984).Biochem J. 224, 317–325.

    Google Scholar 

  • Batenburg, A. M., Brasseur, R., Ruysschaert, J.-M., van Scharrenburg, G. J. M., Slotboom, A. J., Demel, R. A., and de Kruijff, B. (1988a)J. Biol. Chem. 263, 4202–4207.

    Google Scholar 

  • Batenburg, A. M., Demel, R. A., Verkleij, A. J., and de Kruijff, B. (1988b).Biochem 27, 5678–5685.

    Google Scholar 

  • Bedouelle, H., and Hofnung, M. (1981). In Intermolecular Forces (Pullman, B., ed.), Reidel, Dordrecht, The Netherlands, pp. 361–372.

    Google Scholar 

  • Berridge, M. J., and Irvine, R. F. (1989).Nature (London)341, 197–205.

    Google Scholar 

  • Bougis, P., Rochat, H., Pieroni, G., and Verger, R. (1981).Biochemistry 20, 4915–4920.

    Google Scholar 

  • Briggs, M. S., and Gierasch, L. M. (1984).Biochemistry 23, 3111–3114.

    Google Scholar 

  • Briggs, M. S., Gierasch, L. M., Zlotnick, A., Lear, J. D., and DeGrado, W. F. (1985)Science 228, 1096–1099.

    Google Scholar 

  • Briggs, M. S., Cornell, D. G., Dluhy, R. A., and Gierasch, L. M. (1986).Science 233, 206–208.

    Google Scholar 

  • Bruch, M. D., McKnight, C. J., and Gierasch, L. M. (1989).Biochemistry 28, 8554–8561.

    Google Scholar 

  • Bruch, M. D., and Gierasch, L. M. (1990).J. Biol. Chem. 265, 3851–3858.

    Google Scholar 

  • Chen, L., Tai, P. C., Briggs, M. S., and Gierasch, L. M. (1987).J. Biol. Chem. 262, 1427–1429.

    Google Scholar 

  • Chou, M. M. and Kendall, D. A. (1990).J. Biol. Chem. 265, 2873–2880.

    Google Scholar 

  • Chou, P. Y., and Fasman, G. D. (1974).Biochemistry 13, 211–245.

    Google Scholar 

  • Cornell, D. G., Dluhy, R. A., Briggs, M. S., McKnight, C. J., and Gierasch, L. M. (1989).Biochemistry 28, 2789–2797.

    Google Scholar 

  • de Kruijff, B., Cullis, P. R., Verkleij, A. J., Hope, M. J., van Echteld, C. J. A., Taraschi, T. F., van Hoogevest, P., Killian, J. A., Rietvald, A., and van der Steen, A. T. M. (1985). InProgress in Protein-Lipid Interactions (Watts/De Pont, eds.), Elsevier, Amsterdam, pp. 89–142.

    Google Scholar 

  • de Vrije, T., de Swart, R. L., Dowhan, W., Tommassen, J., and de Kruijff, B. (1988).Nature (London)334, 173–175.

    Google Scholar 

  • Emr, S. D., and Silhavy, T. J. (1983).Proc. Natl. Acad. Sci. USA 80, 4599–4603.

    Google Scholar 

  • Engelman, D. M., and Steitz, T. A. (1981).Cell 23, 411–422.

    Google Scholar 

  • Geller, B. L., and Wickner, W. (1985).J. Biol. Chem. 260, 13281–13285.

    Google Scholar 

  • Gilmore, R., Walter, P., and Blobel, G. (1982).J. Cell. Biol. 95, 470–477.

    Google Scholar 

  • Greenfield, N. and Fasman, G. D. (1969).Biochemistry 8, 4108–4116.

    Google Scholar 

  • Gruner, S. M. (1985).Proc. Natl. Acad. Sci. USA 82, 3665–3669.

    Google Scholar 

  • Gruner, S. M., Tate, M. W., Kirk, G. L., So, P. T. C., Turner, P. C., Keane, D. T., Tilcock, C. P. S., and Cullis, P. R. (1988).Biochemistry 27, 2853–2866.

    Google Scholar 

  • Inouye, M., and Halegoua, S. (1980).CRC Crit. Rev. Biochem. 7, 339–337.

    Google Scholar 

  • Jacobs, R. E., and White, S. H. (1989).Biochemistry 28, 3421–3437.

    Google Scholar 

  • Katakai, R., and Iizuka, Y. (1984)J. Am. Chem. Soc. 106, 5715–5718.

    Google Scholar 

  • Killian, J. A., de Jong, A. M. Ph., Bijvelt, J., Verkleij, A. J., and de Kruijff, B. (1990).EMBO J. 9, 815–819.

    Google Scholar 

  • Kreig, U., Walter, P., and Johnson, A. (1986).Proc. Natl. Acad. Sci. USA 83, 8604–8608.

    Google Scholar 

  • Kurzchalia, T. V., Wiedmann, M., Grishovich, A. S., Bochkareva, E. S., Bielka, H., and Rapoport, T. A. (1986).Nature (London)320, 634–636.

    Google Scholar 

  • Leto, T. L., and Holloway, P. W. (1979).J. Biol. Chem. 254, 5015–5020.

    Google Scholar 

  • Lill, R., Cunningham, K., Brundage, L. A., Ito, K., Oliver, D., and Wickner, W. (1989).EMBO J. 8, 961–966.

    Google Scholar 

  • London, E. (1982).Mol. Cell Biochem. 45, 181–188.

    Google Scholar 

  • Majzoub, J. A., Rosenblatt, M., Fennick, B., Maunus, R., Kronenberg, H. M., Potts, J. T., Jr., and Habener, J. F. (1980)J. Biol. Chem. 255, 11478–11483.

    Google Scholar 

  • Mayer, L. D., Nelsestuen, G. L., and Brockman, H. L. (1983).Biochemistry 22, 316–321.

    Google Scholar 

  • McKnight, C. J. (1990). Ph.D. Dissertation, University of Texas Southwestern Medical Center at Dallas.

  • McKnight, C. J., Briggs, M. S., and Gierasch, L. M. (1989).J. Biol. Chem. 264, 17293–17297.

    Google Scholar 

  • Meyer, D. I., Krause, E., and Dobberstein, B. (1982).Nature (London)297, 503–508.

    Google Scholar 

  • Nesmeyanova, M. A. (1982).FEBS Lett. 142, 184–193.

    Google Scholar 

  • Nesmeyanova, M. A., and Bogdanov, M. V. (1989).FEBS Lett. 257, 203–207.

    Google Scholar 

  • Ohno-Washita, Y., and Wickner, W. (1983).J. Biol. Chem. 258, 1895–1900.

    Google Scholar 

  • Reddy, G. L., and Nagaraj, R. (1985).Biochim. Biophys. Acta 831, 340–346.

    Google Scholar 

  • Roseman, M. A. (1988).Biophys. J. 53, 313a.

  • Rosenblatt, M., Beaudette, N. V., and Fasman, G. D. (1980).Proc. Natl. Acad. Sci. USA 77, 3983–3987.

    Google Scholar 

  • Schafer, W. R., Kim, R., Sterne, R., Thorner, J., Kim, S.-H., and Rine, J. (1989).Science 245, 379–385.

    Google Scholar 

  • Shinnar, A. E., and Kaiser, E. T. (1984).J. Am. Chem. Soc. 106, 5006–5007.

    Google Scholar 

  • Siegel, D. P., Banschbach, J., and Yeagle, P. L. (1989).Biochemistry 28, 15075–15080.

    Google Scholar 

  • Stader, J., Benson, S. A., and Silhavy, T. J. (1986).J. Biol. Chem. 261, 15075–15080.

    Google Scholar 

  • Surewicz, W. K., and Epand, R. M. (1984).Biochemistry 23, 6072–6077.

    Google Scholar 

  • Tamm, L. (1986).Biochemistry 26, 7470–7476.

    Google Scholar 

  • Tien, G., Wu, H. C., Ray, P. H., Tai, P. C. (1989).J. Bacteriol 171, 1987–1997.

    Google Scholar 

  • von Heijne, G., and Blomberg, C. (1979).Eur. J. Biochem. 97, 175–181.

    Google Scholar 

  • Watanabe, M., and Blobel, G. (1989).Cell 58, 695–705.

    Google Scholar 

  • Wickner, W. (1980).Science 210, 861–868.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, J.D., McKnight, C.J. & Gierasch, L.M. Biophysical studies of signal peptides: Implications for signal sequence functions and the involvement of lipid in protein export. J Bioenerg Biomembr 22, 213–232 (1990). https://doi.org/10.1007/BF00763166

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00763166

Key Words

Navigation