General Relativity and Gravitation

, Volume 17, Issue 6, pp 579–593 | Cite as

On the scalar-tetradic theories of gravitation: Cosmology and gravitational radiation

  • D. Sáez
Research Articles


The so-called scalar-tetradic theoriesA andB generalize Møller's theory of gravitation. In this work, some results previously obtained in Møller's theory are extended to the theoriesA andB. When the parametersW andλ*. of the theoryA are not too small (or large), the losses of energy and angular momentum of a nongravitationally bound system are proved to be the same as in general relativity. The basic equations of cosmology are derived and some topics are treated. In particular, any density of energyρ0 (10−29 g cm−3ρ0 ≳ 10−31 g cm−3) appears to be compatible with the observational values ofH0 (Hubble constant) andqo (deceleration parameter) in the theory A; thus, no intergalactic energy assumption is necessary.


Radiation General Relativity Angular Momentum Differential Geometry Basic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sáez, D., and de Juan, T. (1984).Gen. Rel. Grav.,16(5), 501.Google Scholar
  2. 2.
    Sáez, D. (1984).Gen. Rel. Grav.,17, 39.Google Scholar
  3. 3.
    Møller, C. (1978).K. Dan. Vidensk. Selsk. Mat. Phys. Medd.,39(13), 1.Google Scholar
  4. 4.
    Meyer, H. (1982).Gen. Rel. Grav.,14(6), 531.Google Scholar
  5. 5.
    Hehl, F. W. Ne'emann, Y. Nitsch, J., and von der Heyde, P. (1978).Phys. Lett. 78B(1), 102.Google Scholar
  6. 6.
    Schweizer, M., and Straumann, N. (1979).Phys. Lett.,71A, 493.Google Scholar
  7. 7.
    Schweizer, M., Straumann, N., and Wipf, A. (1980).Gen. Rel. Grav.,12, 951.Google Scholar
  8. 8.
    Sáez, D. (1983).Phys. Rev.,27D(12), 2839.Google Scholar
  9. 9.
    Brans, C., and Dicke, R. H. (1961).Phys. Rev.,124(3), 925.Google Scholar
  10. 10.
    Mavrides, S. (1973).L'Univers Relativiste (Masson et Cie, Paris).Google Scholar
  11. 11.
    Misner, Ch. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (Freeman, San Francisco).Google Scholar
  12. 12.
    Canuto, V. M., et al. (1983).Phys. Rev. Lett.,51(18), 1609.Google Scholar
  13. 13.
    Sáez, D. (1985). On the scalar-tetradic theory A. Some static spherically symmetric solutionsPhys. Rev. D (submitted for publication).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • D. Sáez
    • 1
  1. 1.Departamento de Mecánica y AstronomíaFacultad de MatemáticasValenciaSpain

Personalised recommendations