General Relativity and Gravitation

, Volume 17, Issue 7, pp 659–668 | Cite as

On some Einstein-Maxwell fields of high symmetry

  • M. A. H. MacCallum
Research Articles


The literature on Einstein-Maxwell fields with high symmetry (including some work by the present author) abounds in errors and unwitting rediscoveries. In the present paper certain static axisymmetric, stationary cylindrically symmetric and nonstatic spatially homogeneous space-times which were previously investigated in a series of papers by Raychaudhuri, Datta, Bera, and De [1–11] are considered. In most cases the general solution of the problems tackled is now known, and is repeated here. The earlier papers are analyzed; while errors (some already pointed out by Carminati and McIntosh [12]) and duplications are found, it is believed that the papers discussed contain the first occurrences of three of the solutions. The calculations in this paper have been verified using the computer algebra system SHEEP.


General Solution Differential Geometry Present Author Early Paper Computer Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raychaudhuri, A. K. (1960).Ann. Phys. (N.Y.),11, 501.Google Scholar
  2. 2.
    Datta, B. K. (1961).Ann. Phys. (N.Y.),12, 295.Google Scholar
  3. 3.
    Datta, B. K. (1961).Ann. Phys. (N.Y.),15, 403.Google Scholar
  4. 4.
    Datta, B. K., and Raychaudhuri, A. K. (1968).J. Math. Phys.,9, 1715.Google Scholar
  5. 5.
    Datta, B. K. (1971). InRelativity and Gravitation, G. C. Kuper and A. Peres, eds. (Gordon and Breach, London).Google Scholar
  6. 6.
    Datta, B. K. (1965).Nuovo Cim.,36, 109.Google Scholar
  7. 7.
    Datta, B. K. (1967).Nuovo Cim.,47, 568.Google Scholar
  8. 8.
    Bera, K., and Datta, B. K. (1968).J. Phys. A,1, 650.Google Scholar
  9. 9.
    Bera, K. (1969).J. Phys. A,2, 138.Google Scholar
  10. 10.
    De, N. C., and Datta, B. K. (1971).Phys. Rev. D,3, 1280.Google Scholar
  11. 11.
    Bera, K., and Datta, B. K. (1974).Gen. Rel. Grav.,5, 483.Google Scholar
  12. 12.
    Carminati, J., and McIntosh, C. B. G. (1980).J. Phys. A,13, 953.Google Scholar
  13. 13.
    Kramer, D., Stephani, H., MacCallum, M., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations. (Deutscher Verlag der Wissenschaften, Berlin, and Cambridge University Press, Cambridge). (Russian edn., Yu. S. Vladimirov, ed., Energoisdat, Moscow, 1982.)Google Scholar
  14. 14.
    MacCallum, M. A. H. (1983).J. Phys. A,16, 3853.Google Scholar
  15. 15.
    Barnes, A. (1978).J. Phys. A,11, 1303.Google Scholar
  16. 16.
    Witten, L. (1962). InGravitation: An Introduction to Current Research, L. Witten, ed. (J. Wiley and Sons, New York).Google Scholar
  17. 17.
    Bonnor, W. B. (1953).Proc. Phys. Soc. A,66, 145.Google Scholar
  18. 18.
    Frick, I. (1977). The computer algebra system SHEEP, what it can and cannot do in general relativity, Univ. of Stockholm Institute of Theoretical Physics technical report 77–14.Google Scholar
  19. 19.
    d'Inverno, R. A., and Frick, I. (1982).Gen. Rel. Grav.,14, 835.Google Scholar
  20. 20.
    Åman, J. E. (1982). A manual for CLASSI; classification programs for geometries in general relativity, Univ. of Stockholm report.Google Scholar
  21. 21.
    MacCallum, M. A. H. (1983). InUnified Field Theories of More than Four Dimensions, Including Exact Solutions (Proceedings of the Eighth International School of Gravitation and Cosmology), E. Schmutzer and V. de Sabbata, eds. (World Scientific Publishing Co., Singapore).Google Scholar
  22. 22.
    Kar, S. C. (1926).Phys. Z.,27, 208.Google Scholar
  23. 23.
    McVittie, G. C. (1929).Proc. R. Soc. London,124, 366.Google Scholar
  24. 24.
    McCrea, J. D. (1982).J. Phys. A,15, 1587.Google Scholar
  25. 25.
    Boachie, L. A., and Islam, J. N. (1983).Phys. Lett. A,93, 321.Google Scholar
  26. 26.
    van den Bergh, N., and Wils, P. (1983).J. Phys. A,16, 3843.Google Scholar
  27. 27.
    Arbex, N., and Som, M. M. (1973).Nuovo. Cim. B,13, 49.Google Scholar
  28. 28.
    Cahen, M., and Defrise, L. (1968).Commun. Math. Phys.,11, 56.Google Scholar
  29. 29.
    Patel, L. K. (1975).Tensor,29, 237.Google Scholar
  30. 30.
    Rosen, G. (1962).J. Math. Phys.,3, 313.Google Scholar
  31. 31.
    Ruban, V. A. (1971). Preprint 355, A. F. Ioffe Institute, Leningrad.Google Scholar
  32. 32.
    Lorenz, D. (1980).Phys. Lett. A,80, 235.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • M. A. H. MacCallum
    • 1
  1. 1.Theoretical Astronomy Unit, School of Mathematical SciencesQueen Mary CollegeLondonUK

Personalised recommendations