Strength of Materials

, Volume 13, Issue 5, pp 628–633 | Cite as

Some strain-hardening mechanisms for polycrystalline molybdenum alloys

  • I. D. Gornaya
  • V. F. Moiseev
  • É. P. Pechkovskii
  • V. I. Trefilov
Scientific-Technical Section


Molybdenum Molybdenum Alloy Polycrystalline Molybdenum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. N. Orlov, “Strain-hardening mechanisms for bcc metals,” in: Physics of Strain Hardening for Single Crystals [in Russian], Naukova Dumka, Kiev (1972), pp. 22–39.Google Scholar
  2. 2.
    V. I. Trefilov, “Effect of cellular structure on the behavior of metals under load,” in: Physics of Strain Hardening for Single-Crystals [in Russian], Naukova Dumka, Kiev (1972), pp. 191–201.Google Scholar
  3. 3.
    V. I. Trefilov, Yu. V. Mil'man and S. A. Firstov, Physical Bases for the Strength of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975).Google Scholar
  4. 4.
    F. F. Lavrent'ev, “Effect of different dislocation reactions on deformation stress in metal crystals,” in: Elementary Processes of Plastic Deformation in Crystals [in Russian], Naukova Dumka, Kiev (1978), pp. 64–74.Google Scholar
  5. 5.
    P. Ludwik, Elements der Technologischen Mechanik, Springer-Verlag, Berlin (1909).Google Scholar
  6. 6.
    J. H. Holloman, “Tensile deformation,” Trans. AIME,162, 268–290 (1945).Google Scholar
  7. 7.
    Y. Bergström and B. Aronsson, “The application of a dislocation model to the strain and temperature dependence of the strain-hardening exponent in the Ludwik-Holloman relation between stress and strain in mild steels,” Met. Trans.,3, No. 7, 1951–1957 (1972); J. Iron Steel Inst.,204. 230–234 (1966).Google Scholar
  8. 8.
    B. Jaoul, “Etude de la forme des courbes de deformation plastique,” J. Mech. Phys. Solidi,5, 95–114 (1957).Google Scholar
  9. 9.
    M. Hollzmann and J. Mann, “Determination of friction stress in bcc polycrystals,” J. Iron Steel Inst.,204, 230–234 (1966).Google Scholar
  10. 10.
    S. V. Ramani and P. Rodriques, “The work-hardening parameters of polycrystalline materials,” Sci. Met.,4, No. 10, 755–760 (1970).Google Scholar
  11. 11.
    P. V. Hirsh and G. E. Bailey, “The dislocation density flow stress and stored energy in cold-worked polycrystalline silver,” Phil. Mag.,5, No. 53, 485–497 (1960).Google Scholar
  12. 12.
    A. L. Roitburd, “Physical models for strain hardening of crystals,” in: Physics of Strain Hardening for Single Crystals [in Russian], Naukova Dumka, Kiev (1972), pp. 5–22.Google Scholar
  13. 13.
    V. S. Ivanova and V. A. Ermishkin, Strength and Ductility of Refractory Metals and Single Crystals [in Russian], Metallurgiya, Moscow (1976).Google Scholar
  14. 14.
    H. Conrad, “Strain-hardening model for explaining the effect of grain size on flow stress in metals,” in: The Superfine Grain in Metals [in Russian], Metallurgiya, Moscow (1973), pp. 206–219.Google Scholar
  15. 15.
    G. J. Teylor, “The mechanism of plastic deformation of crystals. Part 1. Theoretical,” Proc. R. Soc.,145, Ser. A, 362–387 (1934).Google Scholar
  16. 16.
    F. R. N. Nabarro, Z. S. Bazinskii, and D. B. Holt, Ductility of Pure Single Crystals [in Russian], Metallurgiya, Moscow (1967).Google Scholar
  17. 17.
    S. N. Polyakov, A. S. Kidlai, L. M. Naugol'nikova, and I. G. Necheporenko, “Procedure for plotting and analysis of true tensile diagrams,” Zavod. Lab., No. 6, 741–744 (1966).Google Scholar
  18. 18.
    R. Orova, G. Stone, and H. Conrad, “The effects of low temperature and strain rate on the yield and flow stresses of α-titanium,” Trans. ASM,59, 171–184 (1966).Google Scholar
  19. 19.
    V. I. Trefilov, O. M. Barabash, V. F. Moissev, et al., “Effect of nitrogen and titanium on the structure and properties of cast molybdenum alloys,” Fiz. Khim. Mekh. Mater., No. 4, 109–111 (1976).Google Scholar
  20. 20.
    D. L. Holt, “Dislocation cell formation in metals,” J. Appl. Phys.,41, No. 8, 3197–3202 (1970).Google Scholar
  21. 21.
    A. Lawley and H. Gaigher, “Deformation structures in zone melted molybdenum,” Phil. Mag.,10, No. 103, 15–33 (1964).Google Scholar
  22. 22.
    J. D. Gilman, “Microdynamic plasticity theory,” in: Microplasticity [in Russian], Metallurgiya, Moscow (1972), pp. 18–37.Google Scholar
  23. 23.
    M. F. Ashby, “A first report on deformation-mechanism maps,” Acta Met.,20, No. 7, 887–897 (1972).Google Scholar
  24. 24.
    M. V. Grabskii, Structure of Grain Boundaries in Metals [in Russian], Metallurgiya, Moscow (1972).Google Scholar
  25. 25.
    T. Takeuchi, “Theory of high-temperature type work-hardening of bcc metals,” J. Phys, Soc. Jpn.,28, No. 4, 955–964 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • I. D. Gornaya
    • 1
  • V. F. Moiseev
    • 1
  • É. P. Pechkovskii
    • 1
  • V. I. Trefilov
    • 1
  1. 1.Institute of Physical MetallurgyAcademy of Sciences of the Ukrainian SSRKiev

Personalised recommendations