Journal of Bioenergetics and Biomembranes

, Volume 22, Issue 4, pp 509–523 | Cite as

Anion exchange reactions in bacteria

  • Peter C. Maloney


Bacterial anion exchange now includes both “carboxylate-linked” reactions, in which there is an antiport of mono- and dicarboxylic acids, and “Pi-linked” reactions that build on phosphate (Pi) and organic phosphates. To illustrate the general features of this expanding class, this article discussed the biochemistry, physiology, and molecular biology of Pi-linked antiporters that accept glucose 6-phosphate (G6P) as their primary substrate. Kinetic and biochemical analysis suggsts that Pi-linked exchangers have a bifunctional active site that accepts a pair of negative charges. For this reason, exchange stoichiometry moves between the limits of 2:1 and 2:2 to reflect the ratio of mono- and divalent substrates at either membrane surface. This results in a particularly interesting reaction sequencein vivo, where, because cytosolic pH is relatively alkaline, one can expect the asymmetric exchange of two monovalent G6P anions against a single divalent G6P. In this way, an otherwise futile self-exchange of G6P gives a net flux driven (indirectly) by the pH gradient. Despite this biochemical and physiological complexity, Pi-linked carriers resemble all other secondary carriers at a molecular level. Indeed, sequence analysis leads one to infer a common (albeit low resolution) structural theme in which each functional unit has two sets of six trans-membrane α helices separated by a central hydrophilic loop. Present examples show that this topology can derive from either a single protein, as is typical in bacteria, or from pairs of identical subunits, as found in mitochondria and chloroplasts. The finding of this common structure should make it possible to build detailed structural models that have implications for all membrane carrier proteins.

Key Words

Membrane transport reconstitution phosphate transport hydropathy models osmolytes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambudkar, S. V., and Maloney, P. C. (1984). “Characterization of phosphate: hexose 6-phosphate antiport in membrane vesicles ofStreptococcus lactisJ. Biol. Chem. 259, 12576–12585.Google Scholar
  2. Ambudkar, S. V., and Maloney, P. C. (1986). “Bacterial anion exchange. Use of osmolytes during solubilization and reconstitution of phosphate-linked antiport fromStreptococcus lactis,”J. Biol. Chem. 261, 10079–10086.Google Scholar
  3. Ambudkar, S. V., Larson, T. J., and Maloney, P. C. (1986a). “Reconstitution of sugar phosphate transport systems ofEscherichia coli,”J. Biol. Chem. 261, 9083–9086.Google Scholar
  4. Ambudkar, S. V., Sonna, L. A., and Maloney, P. C. (1986b). “Variable stoichiometry of phosphate-linked anion exchange inStreptocuccus lactis: implications for the mechanism of sugar phosphate transport by bacteria,”Proc. Natl. Acad. Sci. USA 83, 280–284.Google Scholar
  5. Anantharam, V., Allison, M. J., and Maloney, P. C. (1989). “Oxalate: formate exchange: the basis for energy coupling in Oxalobacter.”J. Biol. Chem. 264, 7244–7250.Google Scholar
  6. Aquila, H., Link, T., and Klingenberg, M. (1987). “Solute carriers involved in energy transfer of mitochondria form a homologous protein family.”FEBS Lett 212, 1–9.Google Scholar
  7. Bennett, R. L., and Malamy, M. H. (1970). “Arsenate-resistant mutants ofEscherichia coli and phosphate transport,”Biochem. Biophys. Res. Commun. 40, 496–503.Google Scholar
  8. Berger, E. A. (1973). “Different mechanisms of energy for the active transport of proline and glutamine inEscherichia coli,”Proc. Natl. Acad. Sci. USA 70, 1514–1520.Google Scholar
  9. Bishop, L., Abagayani, R. Jr., Ambudkar, S. V., Maloney, P. C., and Ames, G. F.-L. (1989). “Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport, “Proc. Natl. Acad. Sci. USA 86, 6953–6957.Google Scholar
  10. Deitz, G. W. (1976). “The hexose phosphate transport system ofEscherichia coli,”Adv. Enzymol. 44, 237–259.Google Scholar
  11. Eiglmeier, K., Boos, W., and Cole, S. T. (1987). “Nucleotide sequence and transcriptional start point of theglpT gene ofEscherichia coli: extensive sequence homology of the glycerol-3-phosphate transport system with components of the hexose-6-phosphate transport system,”Mol. Microbiol. 1, 251–258.Google Scholar
  12. Essenberg, R. C., and Kornberg, H. L. (1975). “Energy coupling in the uptake of hexose phosphates byEscherichia coli”,J. Biol. Chem. 250, 939–945.Google Scholar
  13. Flugge, U. I., and Heldt, H. W. (1986). “Chloroplast phosphate-triose-phosphate-phosphoglycerate translocator: its identification, isolation, and reconstitution,”Methods. Enzymol. 125, 716–730.Google Scholar
  14. Flugge, U. I., Fischer, K., Gross, A., Sebald, W., Lottspeich, F., and Eckerskorn, C. (1989). “The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-lengthcDNA clone and import of thein vitro synthesized precursor into chloroplasts,”EMBO J. 8, 39–46.Google Scholar
  15. Friedrich, M. J., and Kadner, R. J. (1987). “Nucleotide sequence of theuhp region ofEscherichia coli,”J. Bacteriol. 169, 3556–3563.Google Scholar
  16. Goldrick, D., Yu, G. Q., Jiang, S. Q., and Hong, J. S. (1988). “Nucleotide sequence and transcription start point of the phosphoglycerate transporter gene ofSalmonella typhimurium,”J. Bacteriol. 179, 3421–3426.Google Scholar
  17. Gott, P., and Boos, W. (1988). “The transmembrane topology of thesn-glycerol-3-phosphate permease ofEscherichia coli analyzed byphoA andlacZ protein fusions,”Mol. Microbiol. 2, 655–663.Google Scholar
  18. Harold, F. M., Harold, R. L., and Abrams, A. (1965). “A mutant ofStreptococcus faecalis defective in phosphate transport,”J. Biol. Chem. 240, 3145–3153.Google Scholar
  19. Hayashi, S.-I., Koch, J. P., and Lin, E. C. C. (1964). “Active transport ofl-α-glycerophosphate inEscherichia coli,”J. Biol. Chem. 239, 3098–31054.Google Scholar
  20. Kaback, H. R. (1971). “Bacterial Membranes,”Methods Enzymol. 22, 99–120.Google Scholar
  21. Kaback, H. R. (1986). “Active transport inEscherichia coli: passage to permease,”Annu. Rev. Biophys. 15, 279–319.Google Scholar
  22. Kaczorowski, G. J., and Kaback, H. R. (1979). Mechanism of lactose translocation in membrane vesicles fromEscherichia coli. 1. Effect of pH on efflux, exchange, and counterflow,”Biochemistry 18, 3691–3597.Google Scholar
  23. Klingenberg, M., Hackenberg, H., Kramer, R., Lin, C. S., and Aquila, H. (1980). “Two transport proteins from mitochondria. I. Mechanistic aspects of asymmetry of the ADP/ATP translocator. II. The uncoupling protein of brown adipose tissue mitochondria,”Ann. N. Y. Acad. Sci. 358, 83–95.Google Scholar
  24. Krause, D. C., Winkler, H. H., and Wood, D. O. (1985). “Cloning and expression of theRickettsia prowazekii ADP/ATP translocator inEscherichia coli,”Proc. Natl. Acad. Sci. USA 82, 3015–3019.Google Scholar
  25. Luria, S. E. (1960). “The bacterial protoplasm: composition and organization,” inThe bacteria (Gunsalus, I. C., and Stanier, R. Y., eds.), Academic Press, New York, Vol. 1, pp. 1–34.Google Scholar
  26. Maloney, P. C. (1990). “Resolution and reconstitution of anion exchange,”Phil. Trans. R. Soc. London B 326, 437–454.Google Scholar
  27. Maloney, P. C. (1987). “Coupling to an energized membrane: role of ion-motive gradients in the transduction of metabolic energy,” inEscherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Niedhardt, F. C.,et al., eds.), American Society for Microbiology, Washington, D.C., pp. 222–243.Google Scholar
  28. Maloney, P. C., and Ambudkar, S. V. (1989). “Functional reconstitution of prokaryote and eukaryote membrane proteins,”Arch. Biochem. Biophys. 269, 1–10.Google Scholar
  29. Malone, P. C., and Wilson, T. H. (1985). “The evolution of ion pumps,”Bioscience 35 43–48.Google Scholar
  30. Maloney, P. C., Sonna, L. A., and Ambudkar, S. V. (1986). “Anion exchange as the molecular basis of sugar phosphate transport by bacteria,” inPhosphate Metabolism and Cellular Regulation in Microorganisms (Torriani-Gorini, A., Rothman, F. G., Silver, S., Wright, A., and Yagil, E., eds.), American Society for Microbiology, Washington, D.C., pp. 191–196.Google Scholar
  31. Maloney, P. C., Ambudkar, S. V., Thomas, J., and Schiller, L. (1984). “Phosphate/hexose 6-phosphate antiport inStreptococcus lactis,”J. Bacteriol. 158, 238–245.Google Scholar
  32. Mitchell, P. (1954). “Transport of phosphate across the osmotic barrier ofMicrococcus pyogenes: specificity and kinetics,”J. Gen. Microbiol. 11, 73–82.Google Scholar
  33. Mitchell, P., and Molye, J. (1953). “Paths of phosphate transfer inMicrococcus pyogenes: phosphate turnover in nucleic acid and other fractions,”J. Gen. Microbiol. 9, 257–272.Google Scholar
  34. Newman, M. J., and Wilson, T. H. (1980). “Solubilization and reconstitution of the lactose transport system fromEscherichia coli,”J. Biol. Chem. 255, 10583–10586.Google Scholar
  35. Racker, E., Violand, B., O'Neal, S., Alfonzo, M., and Telford, J. (1979). “Reconstitution, a way of biochemical research: some new approaches to membrane-bound enzymes,”Arch. Biochem. Biophys. 198, 470–477.Google Scholar
  36. Rosen, B. P. (1986). “Recent advances in bacterial ion transport,”Annu. Rev. Microbiol. 40, 263–286.Google Scholar
  37. Rosenberg, H., Gerdes, R. G., and Chegwideen, K. (1977). “Two systems for the uptake of phosphate byEscherichia coli,”J. Bacteriol. 131, 505–511.Google Scholar
  38. Rosenberg, H., Gerdes, R. G., and Harold, F. M. (1979). “Energy coupling to the transport of inorganic phosphate inEscherichia coli,”J. Bacteriol. 131, 505–511.Google Scholar
  39. Runswick, M. J., Powell, S. J., Nyren, P. and Walker, J. E. (1987). “Sequence of the bovine mitochondrial phosphate carrier protein: structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein,”EMBO J. 6, 1367–1373.Google Scholar
  40. Sonna, L. A., Ambudkar, S. V., and Maloney, P. C. (1988). “The mechanism of glucose 6-phosphate transport byEscherichia coli,”J. Biol. Chem. 263, 6625–6630.Google Scholar
  41. Sonna, L. A., and Maloney, P. C. (1988). “Identification and functional reconstitution of phosphate antiport ofStaphylococcus arueus,”J. Memb. Biol. 101, 267–274.Google Scholar
  42. Winkler, H. H. (1976). “Rickettsial permeability. An ADP-ATP transport system”,J. Biol. Chem. 251, 389–396.Google Scholar
  43. Willsky, G. R., and Malamy, M. H. (1980). “Characterization of two genetically separable inorganic phosphate transport systems inEscherichia coli.”J. Bacteriol. 144, 366–374.Google Scholar
  44. Wong, P. T. S., and Wilson, T. H. (1970). Counterflow of galactosides inEscherichia coli,”Biochim. Biophys. Acta 196, 336–350.Google Scholar
  45. Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., and Somero, G. N. (1982). “Living with water stress: evolution of osmolyte systems,”Science 217, 1214–1222.Google Scholar
  46. Zehnder, A. J. B. and Brock, T. D. (1979). “Biological energy production in the apparent absence of electron transport and substrate level phosphorylation,”FEBS Lett. 107, 1–3.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Peter C. Maloney
    • 1
  1. 1.Department of PhysiologyThe Johns Hopkins University School of MedicineBaltimore

Personalised recommendations