Transport systems encoded by bacterial plasmids

Abstract

A variety of bacterial functions are encoded on plasmids, extrachromosomal elements. Examples of plasmid-borne functions are antibiotic production and resistance, degradation of recalcitrant chemicals, virulence factors, and plant symbiotic properties. Several transport systems with diverse functions have recently been found to be carried on plasmids. These systems serve to either accumulate or extrude a compound from a cell. The focus of this review is to present a survey on several of these novel plasmid-borne transport systems emphasizing functions, components, and molecular genetics.

This is a preview of subscription content, access via your institution.

References

  1. Actis, L. A., Potter, S., and Crosa, J. H. (1988).J. Biol. Chem. 263, 2853–2866.

    Google Scholar 

  2. Actis, L. A., Fish, W., Crosa, J. H., Kellerman, K., Ellenberger, S. R., Hauser, F. H., and Luher-Saunders, J. (1986).J. Bacteriol. 167, 57–65.

    Google Scholar 

  3. Barrineau, P., Gilbert, P., Jackson, W. J., Jones, C. S., and Summers, A. O. (1984).J. Mol. Appl. Genet. 2, 601–619.

    Google Scholar 

  4. Binderieff, A., Braun, V., and Hantke, K. (1982).J. Bacteriol. 150, 1472–1475.

    Google Scholar 

  5. Bopp, L. H., Chakrabaraty, A. M., and Ehrlich, H. L. (1983).J. Bacteriol. 155, 1105–1109.

    Google Scholar 

  6. Bopp, L. H., and Ehrlich, H. L. (1988).Arch. Microbiol. 150, 426–431.

    Google Scholar 

  7. Braun, V. (1981).FEMS Microbiol. Lett. 140, 225–228.

    Google Scholar 

  8. Carbonetti, N. H. and Williams, P. H. (1984).Infect. Immun. 46, 7–12.

    Google Scholar 

  9. Cervantes, C., Ohtake, H., and Silver, S. (1988).Annu. Meet. Am. Soc. Microbiol. Abstracts, p. 180.

  10. Chen, C.-M., Misra, T., Silver, S., and Rosen, B. P. (1986).J. Biol. Chem. 261, 15030–15038.

    Google Scholar 

  11. Chen, C.-M., Mobley, H. L. T., and Rosen, B. P. (1985).J. Bacteriol. 161, 758–763.

    Google Scholar 

  12. Cotter, C. M., Trevors, J. T., and Gadd, G. M. (1987).FEMS Microbiol. Lett. 48, 299–303.

    Google Scholar 

  13. Curiale, M. S., McMurry, L. M., and Levy, S. B. (1984).J. Bacteriol. 157, 211–217.

    Google Scholar 

  14. Eberz, G., Eitinger, T., and Friedrich, B. (1989).J. Bacteriol. 171, 1340–1345.

    Google Scholar 

  15. Ebner, R., and Lengeler, J. W. (1988).Microbiol. 2, 9–17.

    Google Scholar 

  16. Eckert, B., and Beck, C. F. (1989).J. Biol. Chem. 264 11663–11670.

    Google Scholar 

  17. Foster, T. J., Nakahara, H., Weiss, A. A., and Silver, S. (1979).J. Bacteriol. 140, 167–181.

    Google Scholar 

  18. Grewal, K. K., Warner, P. J., and Williams, P. H. (1982).FEBS Lett. 140, 27–30.

    Google Scholar 

  19. Hedges, R. W., and Baumberg, S. (1973).J. Bacteriol. 115, 459–460.

    Google Scholar 

  20. Hickman, R. K., and Levy, S. B. (1988).J. Bacteriol. 170, 1715–1720.

    Google Scholar 

  21. Higgins, C. F. (1989).Nature (London)341, 103.

    Google Scholar 

  22. Higgins, C. F., Hiles, I. D., Salmond, G. P. C., Gill, D. R., Downie, J. A., Evans, I. J., Holland, I. B., Gray, L., Buckel, S. D., Bell, A. W., and Hermodson, M. A. (1986).Nature (London)323, 448–450.

    Google Scholar 

  23. Higgins, C. F., Hiles, I. D., Whalley, K., and Jamieson, D. J. (1985).EMBO J. 4, 1033–1040.

    Google Scholar 

  24. Hillen, W., and Scollmier, K. (1983).Nucleic Acids Res. 11, 525–539.

    Google Scholar 

  25. Hirato, T., Shinagawa, M., Ishiguro, N., and Sato, G. A. (1984).J. Bacteriol. 160, 421–426.

    Google Scholar 

  26. Horitsu, H., Futo, S., Ozawa, K., and Kawai, K. (1983).Agric. Biol. Chem. 47, 2907–2908.

    Google Scholar 

  27. Hsu, C. M., and Rosen, B. P. (1989a). InHighlights of Modern Biochemistry (Kotyk, A., Skoda, J., Paces, V., and Kostka, V. B., eds.), VSP International Science Publishers, Zeist, pp. 743–751.

    Google Scholar 

  28. Hsu, C. M., and Rosen, B. P. (1989b).J. Biol. Chem. 264, 17349–17354.

    Google Scholar 

  29. Ishiguro, N., and Sato, G. (1979).J. Hyg. 83, 331–344.

    Google Scholar 

  30. Ishiguro, N., and Sato, G. (1985).J. Bacteriol. 164, 977–982.

    Google Scholar 

  31. Ishiguro, N., Oka, C., and Sato, G. (1978).Appl. Environ. Microbiol. 36, 217–222.

    Google Scholar 

  32. Ishiguro, N., Sato, G., and Yoshikawa, M. (1981).J. Bacteriol. 148, 383–385.

    Google Scholar 

  33. Ishiguro, N., Sasatu, N., Misra, T. K., and Silver, S. (1988).Gene 68, 181–192.

    Google Scholar 

  34. Jackson, W. J., and Summers, A. O. (1982).J. Bacteriol. 151, 962–970.

    Google Scholar 

  35. Jobling, M. G., and Ritchie, D. A. (1987).Mol. Gen. Genet. 208, 28–293.

    Google Scholar 

  36. Jobling, M. G., and Ritchie, D. A. (1988).Gene ???.

  37. Jones, I. G., and Midgley, M. (1985).FEMS Microbiol. Lett. 28 355–358.

    Google Scholar 

  38. Kaneko, M., Yamaguchi, A., and Sawai, T. (1985).FEBS Lett. 193, 194–198.

    Google Scholar 

  39. Karkaria, C. E. and Rosen, B. P. (1990).J. Biol. Chem. 265, 7832–7836.

    Google Scholar 

  40. Kaur, P., and Vadehra, D. V. (1986).Antimicrob. Agents Chemother. 29, 165–167.

    Google Scholar 

  41. Klock, G. B., Unger, B., Gatz, C., Hillen, W., Altenbuchner, J., Schmid, K., and Schmitt, R. (1985).J. Bacteriol. 161, 326–332.

    Google Scholar 

  42. Lengeler, J., Mayer, R., and Schmid, K. (1982).J. Bacteriol. 151, 468–471.

    Google Scholar 

  43. Levy, S. B. (1984). InAntimicrobial Drug Resistance, Academic Press, New York, pp. 191–240.

    Google Scholar 

  44. Levy, S. B., and McMurry, L. (1974).Biochem. Biophys. Res. Commun. 56, 1060–1068.

    Google Scholar 

  45. Mergeay, M. D., Nies, D., Schlegel, H. G., Gertis, J., Chalres, I., and Grizsegemvan, F. (1985).J. Bacteriol. 162, 328–334.

    Google Scholar 

  46. Marshall, B., Morrissey, S., Flynn, P., and Levy, S. B. (1986).Gene 50, 11–117.

    Google Scholar 

  47. McMurry, L., Petrucci, P., and Levy, S. B. (1980).Proc. Natl. Acad. Sci. USA 77, 3974–3977.

    Google Scholar 

  48. Midgley, M. (1986).J. Gen. Microbiol. 132, 3187–3193.

    Google Scholar 

  49. Misra, T. K., Brown, N. L., Fritzinger, D. C., Pridmore, R. D., Barnes, R. W., Haberstroh, L., and Silver, S. (1984).Proc. Natl. Acad. Sci. USA 81, 5975–5979.

    Google Scholar 

  50. Mobley, H. L. T., and Rosen, B. P. (1982).Proc. Natl. Acad. Sci. USA 79, 6119–6122.

    Google Scholar 

  51. Mobley, H. L. T., Chen, C.-M., Silver, S., and Rosen, B. P. (1983).Mol. Gen. Genet. 191 421–426.

    Google Scholar 

  52. Mobley, H. L. T., and Summers, A. O. (1987). InIon Transport in Prokaryotes (Rosen, B., and Silver, S., eds.), Academic Press, New York, pp. 305–326.

    Google Scholar 

  53. Nakahara, H., Silver, S., Miki, T., and Rownd, R. H. (1979).J. Bacteriol. 140, 161–166.

    Google Scholar 

  54. NiBhriain, N., and Foster, T. J. (1986).Gene 42, 323–330.

    Google Scholar 

  55. Nies, A., Nies, D., and Silver, S. (1989a).J. Bacteriol. 171, 5065–5070.

    Google Scholar 

  56. Nies, D. and Silver, S. (1989).J. Bacteriol. 171, 896–900.

    Google Scholar 

  57. Nies, D. H., Nies, A., Chu, L., and Silver, S. (1989b).Proc. Natl. Acad. Sci. USA 86, 7351–7355.

    Google Scholar 

  58. Nguyen, T. T., Postle, K., and Bertrand, K. P. (1983).Gene 25, 83–92.

    Google Scholar 

  59. Novick, R. P., and Roth, C. (1986).J. Bacteriol. 95, 1335–1342.

    Google Scholar 

  60. Nucifora, G., Chu, L., Misra, T. K., and Silver, S. (1989).Proc. Natl. Acad. Sci. USA 86, 3544–3548.

    Google Scholar 

  61. Ohtake, H., Cervantes, C., and Silver, S. (1987).J. Bacteriol. 169, 3853–3856.

    Google Scholar 

  62. Owolabi, J. B., and Rosen, B. P. (1990).J. Bacteriol. 172, 2367–2371.

    Google Scholar 

  63. Pedersen, P. L., and Carafoli, E. (1987).Trends Biochem. Sci. 12, 146–150.

    Google Scholar 

  64. Reynolds, C. H., and Silver, S. (1983).J. Bacteriol. 156, 1019–1024.

    Google Scholar 

  65. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.-L., Drumm, M. L., Iannuzzi, M. C., Collins, F. S., and Tsui, L.-C. (1989).Nature (London)245, 1066–1073.

    Google Scholar 

  66. Rosen, B. P., and Borbolla, M. G. (1984).Biochem. Biophys. Res. Commun. 124, 760–765.

    Google Scholar 

  67. Rosen, B. P. Weigel, U., Karkaria, C., and Gangola, P. (1988).J. Biol. Chem. 263, 3067–3070.

    Google Scholar 

  68. Rosen, B. P., Hsu, C. M., Karkaria, C. E., Owolabi, J. B., and Tisa, L. S. (1989).Phil. Trans. R. Soc. London, in press.

  69. Rouch, D., Camarkis, J., Lee, B. T. O., and Luke, R. K. J. (1985).J. Gen. Microbiol. 131, 939–943.

    Google Scholar 

  70. San Francisco, M. J. D., Hope, C. L., Owolabi, J. B., Tisa, L. S., and Rosen, B. P. (1990).Nucl. Acid Res. 18, 619–624.

    Google Scholar 

  71. San Francisco, M. J. D., Tisa, L. S., and Rosen, B. P. (1989).Mol. Microbiol. 3, 15–21.

    Google Scholar 

  72. Sasatsu, M., Misra, T., Chu, L. Laddaga, R., and Silver, S. (1985).J. Bacteriol. 164, 983–993.

    Google Scholar 

  73. Schmid, K., Schupfner, M., and Schmitt, R. (1982).J. Bacteriol. 151, 68–76.

    Google Scholar 

  74. Schmid, K., Ebner, R., Altenbuchner, J., Schmitt, R., and Lengeler, J. W. (1988).Mol. Microbiol. 2, 1–8.

    Google Scholar 

  75. Sensfuss, C., and Schlegel, H. G., (1988).FEMS Microbiol. Lett. 55, 295–298.

    Google Scholar 

  76. Siddiqui, R., Benthin, K., and Schlegel, H. G. (1989).J. Bacteriol. 171, 5071–5078.

    Google Scholar 

  77. Siddiqui, R., and Schlegel, H. G. (1987).FEBS Microbiol. Lett. 43, 9–13.

    Google Scholar 

  78. Siddiqui, R., Schlegel, H. G., and Meyer, M. (1988).J. Bacteriol. 170, 4188–4193.

    Google Scholar 

  79. Silver, S., Budd, K., Leahy, K. M., Shaw, W. V., Hammond, D., Novick, R. P., Willsky, G. R., Malamy, M. H., and Rosenberg, H. (1981).J. Bacteriol. 146, 983–996.

    Google Scholar 

  80. Silver, S. and Keach, D. (1982).Proc. Natl. Acad. Sci. USA 79 611–6118.

    Google Scholar 

  81. Silver, S., and Misra, T. K. (1988).Annu. Rev. Microbiol. 42, 717–743.

    Google Scholar 

  82. Starodub, M. E., and Trevors, J. T. (1989).J. Med. Microbiol. 29, 101–110.

    Google Scholar 

  83. Summers, A. O., and Sugarman, L. I. (1974).J. Bacteriol. 119, 242–249.

    Google Scholar 

  84. Tennent, J. M., Lyon, B. R., Gillespie, M. T., May, J. W., and Skurray, R. A. (1985).Antimicrob. Agents Chemother. 27, 79–83.

    Google Scholar 

  85. Tennent, J. M., Lyon, B. R., Midgley, M., Jones, I. G., Purewal, A. S., and Skurray, R. A. (1989).J. Gen. Microbiol. 135, 1–10.

    Google Scholar 

  86. Tisa, L. S., and Rosen, B. P. (1990).J. Biol. Chem.,265, 190–194.

    Google Scholar 

  87. Tolmasky, M. E., Actis, L. A., and Crosa, J. H. (1988).J. Bacteriol. 170 1913–1919.

    Google Scholar 

  88. Trevors, J. T. (1987).Microbiol. Sci. 4, 29–31.

    Google Scholar 

  89. Trevors, J. T., Oddie, K. M., and Belliveau, B. H. (1985).FEMS Microbiol. Rev. 32, 39–54.

    Google Scholar 

  90. Tynecka, Z., Gos, Z., and Zajac, J. (1981a).J. Bacteriol. 147 305–312.

    Google Scholar 

  91. Tynecka, Z., Gos, Z., and Zajac, J. (1981b).J. Bacteriol. 147 313–319.

    Google Scholar 

  92. Unger, B., Klock, G., and Hillen, W. (1984).Nucleic Acids Res. 12, 7693–7703.

    Google Scholar 

  93. Walker, J. E., Saraste, N., Runswick, M. J., and Gay, N. J. (1982).EMBO J. 1, 945–951.

    Google Scholar 

  94. Walters, M. A., Potter, S. A., and Crosa, J. H. (1983).J. Bacteriol. 156 880–887.

    Google Scholar 

  95. Walters, M. A., Bindereis, A., Neilands, J. B., and Crosa, J. H. (1984).Infect. Immun. 43, 765–767.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tisa, L.S., Rosen, B.P. Transport systems encoded by bacterial plasmids. J Bioenerg Biomembr 22, 493–507 (1990). https://doi.org/10.1007/BF00762959

Download citation

Key Words

  • Transport
  • ion pumps
  • antibiotic resistance
  • heavy metal resistance
  • plasmids