Journal of Bioenergetics and Biomembranes

, Volume 22, Issue 1, pp 61–80 | Cite as

Influence of cerebral ischemia and post-ischemic reperfusion on mitochondrial oxidative phosphorylation

  • C. K. Ramakrishna Kurup
  • K. K. Kumaroo
  • Andrew J. Dutka
Research Articles


Unilateral ischemia in the right cerebral hemisphere of the rat was induced by ligation of the right common carotid artery coupled with controlled hemorrhage to produce hypotension (25±8 mm/Hg). Where indicated after 30 min of ischemia, the withdrawn blood was reinfused to restore arterial pressure to normal. Mitochondria isolated from the ipsilateral hemisphere after 30 min of ischemia showed significantly lower respiratory rates than the organelles isolated from the contralateral side. Oxidation of NAD+-linked substrates was more sensitive to inhibition in ischemia (30%) than was of ferrocytochromec (12%), succinate oxidation being intermediate. The activities of membrane-bound dehydrogenases (both NADH and succinate-linked) were also significantly lowered. Ischemia did not affect the cytochrome content of mitochondria. Respiratory activity (NAD+-linked) of mitochondria isolated from the ipsilateral hemisphere was twice as sensitive to inhibition by fatty acid as was of preparations from the contralateral side. Mitochondria isolated from cerebral cortex after 90 min of post-ischemic reperfusion showed no significant improvement in the rate of substrate oxidation. Adenine nucleotide translocase activity and energy-dependent Ca2+ uptake, both of which decreased significantly in mitochondria isolated from the ischemic brain, showed little recovery, on reperfusion. These observations suggested the strong possibility that the deleterious effects of ischemia on mitochondrial respiratory function might be mediated by free fatty acids that are known to accumulate in large amounts in ischemic tissues. The pattern of inhibition of ATPase activity was consistent with this view.

Key Words

Ischemia brain mitochondria respiration calcium transport adenine nucleotide translocase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aithal, H. N., and Ramasarma, T. (1969).Biochem. J. 115, 77–83.Google Scholar
  2. Aprille, J. R. (1988).FASEB J. 2, 2547–2556.Google Scholar
  3. Atkinson, D. E. (1968).Biochemistry 7, 4030–4045.Google Scholar
  4. Bazan, N. G., Jr. (1970).Biochim. Biophys. Acta 218, 1–10.Google Scholar
  5. Bernard, P. A., and Cockrell, R. S. (1979).Biochim. Biophys. Acta 548, 173–186.Google Scholar
  6. Brown, A. W., and Brierley, J. B. (1968).Br. J. Exp. Pathol. 49, 87–106.Google Scholar
  7. Brown, A. W., and Brierley, J. B. (1973).Acta Neuropathol. 23, 9–22.Google Scholar
  8. Carafoli, E. (1987).Annu. Rev. Biochem. 56, 395–433.Google Scholar
  9. Carafoli, E. (1982). InPhysiology of Shock, Anoxia, and Ischemia (Cowley, R. A., and Trump, B. F., eds.), Williams and Wilkins, Baltimore, pp. 92–112.Google Scholar
  10. Castello, M. J., and Frey, T. G. (1987). InMembraneous Structures (Harris, J. R., and Horne, R. W., eds.), Academic Press, New York, pp. 377–444.Google Scholar
  11. Chan, S. H. P., and Barbour, R. L. (1979). InMembrane Bioenergetics (Lee, C. P., Chatz, G., and Ernster, L., eds.), Addison-Wesley, Reading, Massachusetts, pp. 521–532.Google Scholar
  12. Chance, B., and Williams, G. R. (1955).J. Biol. Chem. 217, 407–427.Google Scholar
  13. Chance, B., Leigh, J. S., Jr., Kent, J., McCully, K., Nioka, S., Clark, B. J., Maris, J. M., and Graham, T. (1986).Proc. Natl. Acad. Sci. USA 83, 9458–9462.Google Scholar
  14. Chaturvedi, V. K., and Kurup, C. K. R. (1986).Indian J. Biochem. Biophys. 23, 156–161.Google Scholar
  15. Cheung, J. Y., Bonventre, J. V., Malis, C. D., and Leaf, A. (1986).New Engl. J. Med. 314, 1670–1676.Google Scholar
  16. Clark, J. B., and Nicklas, W. J. (1970).J. Biol. Chem. 245, 4724–4731.Google Scholar
  17. Clendenon, N. R., Allen, N., Komatsu, T., Liss, L., Gordon, W. A., and Heimburger, K. (1971).Arch. Neurol. 25, 432–448.Google Scholar
  18. Cohen, P. J. (1973).Anesthesiology 39, 153–164.Google Scholar
  19. Demopoulos, H. B., Flamm, E., Seligman, M., and Pietronigro, D. D. (1982). InPathology of Oxygen (Autor, A. P., ed.), Academic Press, New York, pp. 127–155.Google Scholar
  20. Findlay, J., Levvy, G. A., and Marsh, C. A. (1958).Biochem. J. 69, 467–476.Google Scholar
  21. Fiskum, G. (1983).Am. J. Emerg. Med. 2, 147–153.Google Scholar
  22. Fiskum, G. (1985).Ann. Emerg. Med. 14, 810–815.Google Scholar
  23. Fridovich, I. (1979).Adv. Neurol. 26, 255–259.Google Scholar
  24. Gardiner, M., Nilsson, B., Rehncrona, S., and Siesjo, B. K. (1981).J. Neurochem. 36, 1500–1505.Google Scholar
  25. Gaudet, R. J., Alam, I., and Levine, L. (1980).J. Neurochem. 35, 653–658.Google Scholar
  26. Gazzotti, P., Malmstrom, K., and Crompton, M. (1980). InMembrane Biochemistry (Carafoli, E., and Semenza, G., eds.), Springer-Verlag, Berlin, pp. 62–76.Google Scholar
  27. Ginsberg, M. D., Mela, L., Wrobel-Kuhl, K., and Reivich, M. (1977).Ann. Neurol. 1, 519–527.Google Scholar
  28. Gjedde, A., and Hindfelt, B. (1975).Acta Anesthesiol. Scand. 19, 310–315.Google Scholar
  29. Grist, E. M., and Baum, H. (1974).FEBS Lett. 48, 41–44.Google Scholar
  30. Hallenbeck, J. R., Leitch, D. R., Dutka, A. J., Greenbaum, D. J., Jr., and Mckee, A. E. (1982).Ann. Neurol. 12, 124–156.Google Scholar
  31. Hass, W. K. (1983).Neurol. Clinics 1, 345–353.Google Scholar
  32. Hillered, L. (1984). InMitochondrial Physiology and Pathology (Fiskum, G., ed.), Van Nostrand Reinhold, New York, pp. 120–146.Google Scholar
  33. Hillered, L., and Ernster, L. (1983).J. Cereb. Blood Flow Metab. 3, 207–214.Google Scholar
  34. Hillered, L., Siesjo, B. K., and Arfors, K. E. (1984).J. Cereb. Blood Flow Metab. 4, 438–446.Google Scholar
  35. Hillered, L., Ernster, L., and Siesjo, B. K. (1985a).J. Cereb. Blood Flow Metab. 4, 430–437.Google Scholar
  36. Hillered, L., Smith, M. L., and Siesjo, B. K. (1985b).J. Cereb. Blood Flow Metab. 5, 259–266.Google Scholar
  37. Hossmann, K. A., Sakaki, S., and Kimoto, K. (1976).Stroke 7, 301–305.Google Scholar
  38. Jacobs, E. E., and Sanadi, D. R. (1960).J. Biol. Chem. 235, 531–534.Google Scholar
  39. Jacobus, W. E. (1985).Annu. Rev. Physiol. 47, 707–725.Google Scholar
  40. Kariman, K. (1985).Life Sci. 37, 71–73.Google Scholar
  41. Kholodenko, B., Zilinskiene, V., Borutaite, V., Ivanoviene, L., Toleikis, A., and Praskevicus, A. (1987).FEBS Lett. 223, 247–250.Google Scholar
  42. King, T. E., and Howard, R. E. (1967).Methods Enzymol. 10, 275–294.Google Scholar
  43. Korup, C. K. R. (1988).Ind. J. Biochem. Biophys. 25, 615–617.Google Scholar
  44. Kuwashima, J., Fujitani, B., Nakamura, K., Kadokawa, T., Yoshida, K., and Shimizu, M. (1976).Brain Res. 110, 547–557.Google Scholar
  45. Lazarewics, J. W., Strosznajder, J., and Gromek, A. (1972).Acad. Pol. Sci. Bull. 20, 599–606.Google Scholar
  46. Lee, C. P., Sottocasa, G. L., and Ernster, L. (1967).Methods Enzymol. 10, 33–37.Google Scholar
  47. Levine, S. (1960).Am. J. Pathol. 36, 1–17.Google Scholar
  48. Mela, L. (1979a).Neurol. Res. 1, 51–63.Google Scholar
  49. Mela, L. (1979b).Circ. Shock Suppl. 1, 61–67.Google Scholar
  50. Mela, L. (1982). InPathophysiology of Shock, Anoxia, and Ischemia (Cowley, R. A., and Trump, B. F., eds.), Williams and Wilkins, Baltimore, pp. 84–95.Google Scholar
  51. Mela, L., Miller, L. D., Bacalzo, L. V., Jr., Olofsson, K., and White, R. R. (1973).Ann. Surg. 178, 727–735.Google Scholar
  52. Mela, L., Crowe, W., Harbig, K., Wrobel-Kuhl, K., and Kovach, A. (1975).Surg. Forum 26, 51–53.Google Scholar
  53. Mela, L., Crowe, W., Wrobel-Kuhl, K., and Miller, L. D. (1978). InCerebral Ischemia and Arterial Hypertension (Mossakowski, M. J., Zelman, I. B., and Kroh, H., ed.), Polish Medical Publishers, Warsaw, pp. 96–98.Google Scholar
  54. Moore, C. L., and Jobsis, F. F. (1970).Arch. Biochem. Biophys. 295–305.Google Scholar
  55. Moskowitz, M. A., Kiwak, K. J., Heikimian, K., and Levin, L. (1984).Science 224, 886–889.Google Scholar
  56. Nair, N., and Kurup, C. K. R. (1986).Indian J. Biochem. Biophys. 23, 76–79.Google Scholar
  57. Natarajan, V., Schmid, P. C., and Schmid, H. H. O. (1986).Biochim. Biophys. Acta 878, 32–41.Google Scholar
  58. Nordstrom, C. H., Rehncrona, S., and Siesjo, B. K. (1978).Stroke 9, 335–343.Google Scholar
  59. Ohnishi, S. T., and Barr, J. K. (1978).Anal. Biochem. 86, 193–200.Google Scholar
  60. Ozawa, K., Seta, K., Araki, H., and Handa, H. (1967).J. Biochem. (Tokyo)61, 512–514.Google Scholar
  61. Panini, S. R., and Kurup, C. K. R. (1975).Arch. Biochem. Biophys. 168, 188–197.Google Scholar
  62. Pujra, W. J., Klienfeld, A. M., and Karnovsky, M. J. (1984).Biochemistry 23, 2039–2043.Google Scholar
  63. Pullman, M. E. (1967).Methods Enzymol. 10, 57–60.Google Scholar
  64. Puranam, R. S., Shivaswamy, V., Kurup, C. K. R., and Ramasarma, T. (1984).J. Bioenerg. Biomembr. 16, 421–431.Google Scholar
  65. Purushottam, T., and Ghosh, N. C. (1975).Environ. Physiol. Biochem. 5, 73–77.Google Scholar
  66. Rasheed, B. K. A., Chhabra, S., and Kurup, C. K. R. (1980).Biochem. J. 191–198.Google Scholar
  67. Rehncrona, S., Mela, L., and Siesjo, B. K. (1979).Stroke 10, 437–446.Google Scholar
  68. Rehncrona, S., Westerberg, E., Akesson, B., and Siesjo, B. K. (1982).J. Neurochem. 38, 84–93.Google Scholar
  69. Richter, C., and Frei, B. (1988).Free Radical Biol. Med. 4, 365–375.Google Scholar
  70. Rosenthal, R. E., Hamud, F., Fiskum, G., Varghese, P. J., and Sharpe, S. (1987).J. Cereb. Blood Flow Metab. 7, 752–758.Google Scholar
  71. Saikumar, P., and Kurup, C. K. R. (1984a).Biochim. Biophys. Acta 776, 263–266.Google Scholar
  72. Saikumar, P., and Kurup, C. K. R. (1984b).Indian J. Biochem. Biophys. 21, 309–313.Google Scholar
  73. Schullery, S. E., Seder, T. A., Weinstein, D. A., and Bryant, D. A. (1981).Biochemistry 20, 6818–6824.Google Scholar
  74. Schutz, H., Silverstein, P. R., Vapalahti, M., Bruce, D. A., Mela, L., and Langfitt, T. W. (1973).Arch. Neurol. 29, 408–416.Google Scholar
  75. Sharma, O. P. (1977).J. Neurochem. 28, 1377–1379.Google Scholar
  76. Siesjo, B. K. (1981).J. Cereb. Blood Flow Metab. 1, 155–185.Google Scholar
  77. Siesjo, B. K. (1988).Ann. N.Y. Acad. Sci. 522, 638–661.Google Scholar
  78. Sims, N. R., and Pulsinelli, W. A. (1987).J. Neurochem. 49, 1367–1374.Google Scholar
  79. Sivaramakrishnan, S., and Ramasarma, T. (1975).Environ. Physiol. Biochem. 5, 189–200.Google Scholar
  80. Smith, M. L., Bendek, G., Dahlgren, N., Rosen, I., Wieloch, T., and Siesjo, B. K. (1984).Acta Neurol. Scand. 69, 385–401.Google Scholar
  81. Snodgrass, P. J., and Piras, M. M. (1966).Biochemistry 5, 1140–1149.Google Scholar
  82. Somlyo, A. P. (1985).Cell Calcium 6, 197–212.Google Scholar
  83. Trump, B. F., Berezesky, I. K., and Cowley, R. A. (1982). InPathophysiology of Shock, Anoxia, and Ischemia (Cowley, R. A., and Trump, B. F., eds.), Williams and Wilkins, Baltimore, pp. 6–46.Google Scholar
  84. Veldsema-Currie, R. D., and Slater, E. G. (1968).Biochim. Biophys. Acta 162, 310–319.Google Scholar
  85. Vladimirov, Y. A., Olenov, V. A., Suslova, T. B., and Cheremisina, Z. P. (1980).Adv. Lipid Res. 17, 173–249.Google Scholar
  86. Watson, B. D., and Ginsberg, M. D. (1988). InOxygen Radicals and Tissue Injury (Halliwell, B., ed.), FASEB, Bethesda, pp. 81–91.Google Scholar
  87. Welsh, F. A., O'Connor, M. J., Marcy, V. R., Spatacco, A. J., and Johns, R. L. (1982).Stroke 13, 234–242.Google Scholar
  88. Westerhoff, H. V., Plomp, P. J. A. M., Groen, A. K., Wanders, R. J. A., Bode, J. A., and Van Dam, K. (1987).Arch. Biochem. Biophys. 257, 154–169.Google Scholar
  89. White, B. C., Wiegenstein, J. G., and Winegar, C. D. (1984).J. Am. Med. Assoc. 251, 1586–1590.Google Scholar
  90. Wilson, S. B. (1978). InPlant Mitochondria (Ducet, G., and Lance, C., eds.), Elsevier, Amsterdam, pp. 215–222.Google Scholar
  91. Wojtczak, L. (1976).J. Bioenerg. Biomembr. 8, 293–311.Google Scholar
  92. Yang, S., He, X., and Schulz, H. (1987).J. Biol. Chem. 262, 13027–13032.Google Scholar
  93. Yoshida, S., Abe, K., Busto, R., Watson, B. D., Kogure, K., and Ginsberg, M. D. (1982).Brain Res. 245, 307–316.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • C. K. Ramakrishna Kurup
    • 1
    • 2
  • K. K. Kumaroo
    • 3
  • Andrew J. Dutka
    • 4
  1. 1.Department of BiochemistryIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Physiology and BiophysicsGeorgetown UniversityWashington, DC
  3. 3.Diving Medicine DepartmentNaval Medical Research InstituteBethesda
  4. 4.Uniformed Services University of Health SciencesBethesda

Personalised recommendations