Advertisement

Strength of Materials

, Volume 5, Issue 4, pp 465–470 | Cite as

Investigation of cracks by the electrical resistance method

  • V. I. Vladimirov
  • R. G. Lupashki
Scientific and Technical Section

Conclusions

  1. 1.
    An expression for the diagonal components of the tensor (residual resistance) of a specimen with cracks having ellipsoidal form was obtained for the case of high temperatures and large deformations. It was shown that with cracks having the same orientation the longitudinal and transverse components are different. In the absence of cracks the component z of the residual resistance tensor corresponding most closely to the experimental conditions (insignificant dilation ξ ∼ 10−3–10−5, small c axis of crack of diskshaped form, with anisometry parameter α = IIc/4b) parallel to the direction of the current) has the following form for a conductor with specific resistance ρ0:
    $$\Delta \rho _{zz}^c = \frac{{\rho _0 \xi }}{{2\alpha }}.$$
    In addition, when ξ = α there is the possibility of simultaneously determining the average dimensions of the cracks and their concentration.
     
  2. 2.

    A comparison was made of the residual electrical resistance created by point defects, dislocations, and cracks during plastic deformation of metals; the theoretical results obtained were also compared with experiment. It was found that during plastic deformation of aluminum the additional resistance observed in a series of experiments can be explained by the contribution of N = 109 cm−3 disk-shaped cracks.

     
  3. 3.

    With alternating current the presence of cracks in nonmetallic poor conductors causes unequal dispersion of the imaginary and real parts of the complex specific conductivity. For metals the capacity susceptance of the cracks is insignificant.

     
  4. 4.

    On the basis of the skin effect a method was developed for calculating the concentration of cracks by measuring the ohmic resistance of the conductor.

     

Keywords

Plastic Deformation Point Defect Large Deformation Specific Conductivity Average Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. N. Zhurkov, Vestnik Akad. Nauk SSSR, No.11 (1957); Neorganicheskie Materialy, No.3 (1967).Google Scholar
  2. 2.
    V. I. Vladimirov, A. N. Orlov, and V. A. Petrov, Phys. St. Sol., No.47 (1971).Google Scholar
  3. 3.
    V. I. Vladimirov, A. N. Orlov, and V. A. Petrov. Phys. St. Sol., No.42 (1970).Google Scholar
  4. 4.
    S. N. Zhurkov, V. A. Marikhin, and A. I. Slutsker, Fiz. Tverd. Tela, No. 1 (1959).Google Scholar
  5. 5.
    V. S. Kuksenko, A. I. Slutsker, and A. L. Yastrebinskii, Fiz. Tverd. Tela, No. 9 (1967).Google Scholar
  6. 6.
    V. A. Zakrevskii, V. S. Kuksenko, et al., Fiz. Tverd. Tela, No. 11 (1969).Google Scholar
  7. 7.
    M. A. Gezalov, V. S. Kuksenko, and A. I. Slutsker, Fiz. Tverd. Tela, No. 12 (1970).Google Scholar
  8. 8.
    A. M. Leksovskii and V. R. Regel', in: Materials of a Conference on Metal Fatigue [in Russian], Nauka, Moscow (1967).Google Scholar
  9. 9.
    A. M. Leksovskii, O. F. Kirienko, and V. R. Regel', Mekhanika Polimerov, No.1 (1966).Google Scholar
  10. 10.
    I. A. Oding and Yu. P. Liberov, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Metallurgiya i Gornoe Delo, No. 2 (1964).Google Scholar
  11. 11.
    R. I. Garber, I. V. Obreimov, and L. M. Polyakov, Dokl. Akad. Nauk SSSR, No. 108 (1956).Google Scholar
  12. 12.
    R. I. Garber and L. M. Polyakov, Fiz. Tverd. Tela, No. 5 (1960).Google Scholar
  13. 13.
    B. Ya. Levin, V. I. Betekhtin, et al., Fiz. Tverd. Tela, No. 12 (1970).Google Scholar
  14. 14.
    D. L. Dexter, Phys. Rev., No. 103 (1956).Google Scholar
  15. 15.
    A. N. Stroh, Phil. Mag., No.3 (1957).Google Scholar
  16. 16.
    I. K. Ovchinnikov, in: Course of Lectures for Prospecting Geologists. Field Theory [in Russian], Izd. Sverdlovskogo Gornogo Instituta, Sverdlovsk (1962).Google Scholar
  17. 17.
    L. E. Kaechle and A. S. Tetelman, Acta Met., No.17 (1969).Google Scholar
  18. 18.
    N. F. Mott and H. Jones, Theory of Properties of Metals and Alloys, Clarendon Press, Oxford (1936).Google Scholar
  19. 19.
    J. Friedel, Dislocations [Russian translation], Mir, Moscow (1967).Google Scholar
  20. 20.
    J. G. Rider and C. T. B. Foxon, Phil. Mag., No. 122 (1966).Google Scholar
  21. 21.
    Fucoi Uun, Phil. Mag., No. 168 (1969).Google Scholar
  22. 22.
    S. E. Ceresara, H. Elkholy, and T. Federighi, Phys. St. Sol., No. 8 (1965).Google Scholar
  23. 23.
    L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], GITTL, Moscow (1957).Google Scholar
  24. 24.
    W. Hellental, R. Lucke, and H. Ostholt, Zeitschrift fur Angewandte Physik, No. 3 (1969).Google Scholar
  25. 25.
    E. Johnston and H. Johnston, Rev. Scient. Instrum., No.6 (1964).Google Scholar
  26. 26.
    I. E. Tamm, Principles of Electricity [Russian translation], GITTL, Moscow (1957).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • V. I. Vladimirov
    • 1
  • R. G. Lupashki
    • 1
  1. 1.A. F. Ioffe Physicotechnical InstituteAcademy of Sciences of the USSRLeningrad

Personalised recommendations