Skip to main content
Log in

On the fundamental representation of borcherds algebras with one imaginary simple root

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Borcherds algebras represent a new class of Lie algebras which have almost all the properties that ordinary Kac-Moody algebras have, but the only major difference is that these generalized Kac-Moody algebras are allowed to have imaginary simple roots. The simplest nontrivial examples one can think of are those where one adds ‘by hand’ one imaginary simple root to an ordinary Kac-Moody algebra. We study the fundamental representation of this class of examples and prove that an irreducible module is given by the full tensor algebra over some integrable highest weight module of the underlying Kac-Moody algebra. We also comment on possible realizations of these Lie algebras in physics as symmetry algebras in quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borcherds, R. E., Vertex algebras, Kac-Moody algebras, and the monster,Proc. Nat. Acad. Sci. USA,83, 3068–3071 (1986).

    Google Scholar 

  2. Borcherds, R. E., Monstrous Lie superalgebras,Invent. Math. 109, 405–444 (1992).

    Google Scholar 

  3. Gebert, R. W., Introduction to vertex algebras, Borcherds algebras, and the monster Lie algebra.Internat. J. Modern Phys. A 8, 5441–5503 (1993).

    Google Scholar 

  4. Conway, J. H., The automorphism group of the 26-dimensional even unimodular Lorentzian lattice,J. Algebra 80, 159–163 (1983).

    Google Scholar 

  5. Borcherds, R. E., Conway, J. H., Queen, L., and Sloane, N. J. A., A monster Lie algebra?Adv. in Math. 53, 75–79 (1984).

    Google Scholar 

  6. Frenkel, I. B., Representations of Kac-Moody algebras and dual resonance models, inApplications of Group Theory in Theoretical Physics, Lect. Appl. Math., Vol. 21. Amer. Math. Soc., Providence, 1985, pp. 325–353.

    Google Scholar 

  7. Goddard, P. and Olive, D., Algebras, lattices and strings, in J. Lepowsky, S. Mandelstam, and I. M. Singer (eds),Vertex Operators in Mathematics and Physics - Proc. Conference, November 10-17, 1983, Publ. Math. Sci. Res. Inst. #3, Springer, New York, 1985, pp. 51–96.

    Google Scholar 

  8. Borcherds, R. E., The monster Lie algebra,Adv. in Math. 83, 30–47 (1990).

    Google Scholar 

  9. Borcherds, R. E., Generalized Kac-Moody algebras,J. Algebra 115, 501–512 (1988).

    Google Scholar 

  10. Harada, K., Miyamoto, M., and Yamada, H. A generalization of Kac-Moody algebras, Preprint.

  11. Borcherds, R. E., Central extensions of generalized Kac-Moody algebras,J. Algebra 140, 330–335 (1991).

    Google Scholar 

  12. Slansky, R., An algebraic role for energy and number operators for multiparticle states. Preprint LA-UR-91-3562, Los Alamos National Laboratory, 1991.

  13. Kac, V. G.,Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge, third edition, 1990.

    Google Scholar 

  14. Gepner, D. and Witten, E., String theory on group manifolds,Nuclear Phys. B 278, 493–549 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Konrad-Adenauer-Stiftung e.V.

Supported by Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebert, R.W., Teschner, J. On the fundamental representation of borcherds algebras with one imaginary simple root. Lett Math Phys 31, 327–334 (1994). https://doi.org/10.1007/BF00762796

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762796

Mathematics Subject Classifications (1991)

Navigation