Letters in Mathematical Physics

, Volume 31, Issue 4, pp 279–288 | Cite as

SU q (2) covariant\(\hat R\)-matrices for reducible representations

  • A. Lorek
  • W. B. Schmidke
  • J. Wess
Article

Abstract

We consider SU q (2) covariant\(\hat R\)-matrices for the reducible31 representation. There are three solutions to the Yang-Baxter equation. They coincide with the previously known\(\hat R\)-matrices for SO q (3) and SO q (3, 1). Also, they are the three\(\hat R\)-matrices which can be constructed by using four different SU q (2) doublets. Only two of the three\(\hat R\)-matrices allow a differential structure on the reducible four-dimensional quantum space.

Mathematics Subject Classifications (1991)

16W30 81R05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biedenharn, L. C., p. 61 in C. Bartocci, U. Bruzzo, and R. Cianci (eds),Proc. Differential Geometric Methods in Theoretical Physics, Rapallo, Italy, 1990, Springer-Verlag, New York, Berlin, 1991, and references therein.Google Scholar
  2. 2.
    Faddeev, L. D., Reshetikhin, N. Yu, and Takhtajan, L. A.,Leningrad Math. J. 1, 193 (1990).Google Scholar
  3. 3.
    Ogievetsky, O., Schmidke, W. B., Wess, J., and Zumino, B.,Comm. Math. Phys. 150, 495 (1992).Google Scholar
  4. 4.
    Ogievetsky, O., Schmidke, W. B., Wess, J., and Zumino, B., to appear inProc. First German-Polish Symposium on ‘Particles and Fields’, Rydzyna, Poland, 1992.Google Scholar
  5. 5.
    Jain, V. and Ogievetsky, O.,Modern Phys. Lett. A 7, 2199 (1992).Google Scholar
  6. 6.
    Wess, J. and Zumino, B., Covariant differential calculus,Nuclear Phys. B (Proc. Suppl.)18, 320 (1990).Google Scholar
  7. 7.
    Wess, J., Differential calculus on quantum planes and applications, Talk given at Third Centenary Celebrations of the Mathematische Gesellschaft, March 1990, based on work with B. Zumino, preprint KA-THEP-1990-22 (1990).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • A. Lorek
    • 1
  • W. B. Schmidke
    • 1
  • J. Wess
    • 1
    • 2
  1. 1.Max-Planck-Institut für PhysikWerner-Heisenberg-Institut für PhysikMunichGermany
  2. 2.Sektion PhysikUniversität MünchenMunichGermany

Personalised recommendations