Skip to main content
Log in

Triphenyltin as inductor of mitochondrial membrane permeability transition

  • Original Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The effect of triphenyltin on mitochondrial Ca2+ content was studied. It was found that this trialkyltin compound induces an increase in membrane permeability that leads to Ca2+ release, drop of the transmembrane potential, and efflux of matrix proteins. Interestingly, cyclosporin A was unable to inhibit triphenyltin-induced Ca2+ release. Based on these results it is proposed that the hyperpermeable state is produced by modification of 2.25 nmol of membrane thiol groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akerman, K. E., and Wikstrom, M. F. K. (1976).FEBS Lett. 68, 191–197.

    Google Scholar 

  • Aldridge, W. N., and Cremer, J. E., (1955).Biochem. J. 61, 406–418.

    Google Scholar 

  • Beatrice, M. C., Palmer, J. W., and Pfeiffer, D. R. (1980).J. Biol. Chem. 255, 8663–8671.

    Google Scholar 

  • Bellomo, G., Martins, A., Richelmi, P., Morre, G., Jewell, S. A., and Orrenius, S. (1984).Eur. J. Biochem. 140, 1–6.

    Google Scholar 

  • Bernardi, P., Veronese, P., and Petronilli, V. (1993).J. Biol. Chem. 268, 1005–1010.

    Google Scholar 

  • Broekemeier, K., and Pfeiffer, D. R. (1989).Biochim. Biophys. Res. Commun. 163, 561–566.

    Google Scholar 

  • Broekemeier, K., Dempsey, M. E., and Pfeiffer, D. R. (1989).J. Biol. Chem. 264, 7826–7830.

    Google Scholar 

  • Bygrave, F. L., Ramachandran, C., and Robertson, R. N. (1978).Arch. Biochem. Biophys. 1888, 301–307.

    Google Scholar 

  • Chávez, E., and Bravo, C. (1988).Life Sci. 43, 975–981.

    Google Scholar 

  • Chávez, E., and Holguín, J. A. (1988).J. Biol. Chem. 263, 3582–3587.

    Google Scholar 

  • Chávez, E., Briones, R., Michel, B., Bravo, C., and Jay, D. (1985).Arch. Biochem. Biophys. 242, 493–497.

    Google Scholar 

  • Chávez, E., Zazueta, C., Díaz, E., and Holguin, J. A. (1989).Biochim. Biophys. Acta 986, 27–32.

    Google Scholar 

  • Chávez, E., Zazueta, C., Reyes-Vivas, H., Pichardo, J., Corona, N., Uribe, A., and Chávez, R. (1992).Int. J. Biochem. 24, 1779–1784.

    Google Scholar 

  • Crompton, J., Dawson, A. P., Stockdale, M., and Gains, N. (1970b).Eur. J. Biochem. 14, 120–126.

    Google Scholar 

  • Crompton, M., Ellinger, H., and Costi, A. (1988).Biochem. J. 255, 357–360.

    Google Scholar 

  • Crompton, M., McGuiness, O., and Nazareth, W. (1992).Biochim. Biophys. Acta 1101, 214–217.

    Google Scholar 

  • Davidson, A. M., and Halestrap, A. P. (1990).Biochem. J. 628, 147–152.

    Google Scholar 

  • Ellman, G. L. (1959).Arch. Biochem. Biophys. 22, 70–77.

    Google Scholar 

  • Fournier, N., Doucet, G., and Crevat, A. (1987).J. Bioenerg. Biomembr. 19, 297–303.

    Google Scholar 

  • Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. 528 (Cell Physiol), C755-C786.

    Google Scholar 

  • Halestrap, A. P., and Davidson, A. M. (1990).Biochem. J. 268, 153–160.

    Google Scholar 

  • Igbavboa, U., Zwizinski, C. W., and Pfeiffer, D. R. (1989).Biochem. Biophys. Res. Commun. 161, 619–625.

    Google Scholar 

  • Kendrick, N. C. (1976).Anal. Biochem. 76, 487–501.

    Google Scholar 

  • Lenartowicz, E., Bernardi, P., and Azzon, G. F. (1991).J. Bioenerg. Biomembr. 23, 679–688.

    Google Scholar 

  • Lotscher, H. R., Winterhalter, K. H., Carafoli, E., and Richter, C. (1980).J. Biol. Chem. 255, 9325–9330.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.

    Google Scholar 

  • Palmer, J. W., and Pfeiffer, D. R. (1981).J. Biol. Chem. 256, 6742–6750.

    Google Scholar 

  • Petronilli, V., Cola, C., and Bernardi, P. (1993).J. Biol. Chem. 268, 1011–1016.

    Google Scholar 

  • Rose, M. S., and Aldridge, W. N. (1968).Biochem. J. 106, 821–828.

    Google Scholar 

  • Schaaegger, H., and von Jagow, G. (1987).Anal. Biochem. 66, 368–379.

    Google Scholar 

  • Selwyn, M. J., Stockdale, M., and Dawson, A. P. (1970a).Biochem. J. 116, 15P.

  • Selwyn, M. J., Dawson, A. P., Stockdale, M., and Gains, N. (1970b).Eur. J. Biochem. 14, 120–126.

    Google Scholar 

  • Stockdale, M., Dawson, A. P., and Selwyn, M. J. (1970).Eur. J. Biochem. 15, 342–351.

    Google Scholar 

  • Valle, V. G. R., Fagian, M. M., Parentoni, L. S., Macedo, D. V., Meinicke, A. R., and Vercesi, A. E. (1993).Arch. Biochem. Biophys. 307, 1–7.

    Google Scholar 

  • Vercesi, A. E. (1984).Biochem. Biophys. Res. Commun. 119, 305–310.

    Google Scholar 

  • Vercesi, A. E. (1985).An. Acad. Bras. Cienc. 57, 369–375.

    Google Scholar 

  • Zoccarato, F., Rugolo, M., Siliprandi, D., and Siliprandi, N. (1981).Eur. J. Biochem. 114, 195–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zazueta, C., Reyes-Vivas, H., Bravo, C. et al. Triphenyltin as inductor of mitochondrial membrane permeability transition. J Bioenerg Biomembr 26, 457–462 (1994). https://doi.org/10.1007/BF00762786

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762786

Key words

Navigation