Skip to main content
Log in

Energy-transducing nicotinamide nucleotide transhydrogenase: Nucleotide sequences of the genes and predicted amino acid sequences of the subunits of the enzyme fromRhodospirillum rubrum

  • Original Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Based on the amino acid sequence of the N-terminus of the soluble subunit of theRhodospirillum rubrum nicotinamide nucleotide transhydrogenase, two oligonucleotide primers were synthesized and used to amplify the corresponding DNA segment (110 base pairs) by the polymerase chain reaction. Using this PCR product as a probe, one clone with the insert of 6.4kbp was isolated from a genomic library ofR. rubrum and sequenced. This sequence contained three open reading frames, constituting the genesnntA1, nntA2, andnntB of theR. rubrum transhydrogenase operon. The polypeptides encoded by these genes were designated α1, α2, and β, respectively, and are considered to be the subunits of theR. rubrum transhydrogenase. The predicted amino acid sequence of the α1 subunit (384 residues; molecular weight 40276) has considerable sequence similarity to the α subunit of theEscherichia coli and the N-terminal 43-kDa segment of the bovine transhydrogenases. Like the latter, it has a βαβ fold in the corresponding region, and the purified, soluble α 1 subunit cross-reacts with antibody to the bovine N-terminal 43-kDa fragment. The predicted amino acid sequence of the β subunit of theR. rubrum transhydrogenase (464 residues; molecular weight 47808) has extensive sequence identity with the β subunit of theE. coli and the corresponding C-terminal sequence of the bovine transhydrogenases. The chromatophores ofR. rubrum contain a 48-kDa polypeptide, which cross-reacts with antibody to the C-terminal 20-kDa fragment of the bovine transhydrogenase. The predicted amino acid sequence of the α2 subunit of theR. rubrum enzyme (139 residues; molecular weight 14888) has considerable sequence identity in its C-terminal half to the corresponding segments of the bovine and the α subunit of theE. coli transhydrogenases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Capaldi, R. A., and Vanderkooi, G. (1972).Proc. Natl. Acad. Sci. USA 69 930–932.

    Google Scholar 

  • Chen, E. Y., and Seeburg, P. H. (1985).DNA (N. Y.) 4 165–170.

    Google Scholar 

  • Clarke, D. M., and Bragg, P. D. (1985).Eur. J. Biochem. 149 517–523.

    Google Scholar 

  • Clarke, D. M., Loo, T. W., Gillam, S., and Bragg, P. D. (1986).Eur. J. Biochem. 158 647–653.

    Google Scholar 

  • Cunningham, I. J., Williams, R., Palmer, T., Thomas, C. M., and Jackson, J. B. (1992).Biochim. Biophys. Acta 1100 332–338.

    Google Scholar 

  • Denhardt, D. T. (1966).Biochem. Biophys. Res. Commun. 23 641–646.

    Google Scholar 

  • Devereux, J., Haeberli, P., and Smithies, O. (1984).Nucleic Acids Res. 12 387–395.

    Google Scholar 

  • Fisher, R. R., and Guillory, R. J. (1971).J. Biol. Chem. 246 4687–4693.

    Google Scholar 

  • Hatefi, Y. and Yamaguchi, M. (1992). InMolecular Mechanisms in Bioenergetics (Ernster, L., ed.), Elsevier, Amsterdam, pp. 265–281.

    Google Scholar 

  • Hou, C., Potier, M., and Bragg, P. D. (1990).Biochim. Biophys. Acta 1018 61–66.

    Google Scholar 

  • Kramer, R. A., Tomchak, L. A., McAndrew, S. J., Becker, K., Hug, D., Pasamontes, L., and Hümbelin, M. (1993).Mol. Biochem. Parasitol. 60 327–332.

    Google Scholar 

  • Kyte, J., and Doolittle, R. F. (1982).J. Mol. Biol. 157 105–132.

    Google Scholar 

  • Laemmli, U. K., (1970).Nature (London) 227 680–685.

    Google Scholar 

  • Lee, C. P., and Ernster, L. (1989).Biochim. Biophys. Acta 1000 371–376.

    Google Scholar 

  • Lever, T. M., Palmer, T., Cunningham, I. J., Cotton, N. P. J., and Jackson, J. B. (1991).Eur. J. Biochem. 197 247–255.

    Google Scholar 

  • McFadden, B. J., and Fisher, R. R. (1978).Arch. Biochem. Biophys. 190 820–828.

    Google Scholar 

  • Mosbach, K., Guilford, H., Ohlsson, R., and Scott, M. (1972).Biochem. J. 127 625–631.

    Google Scholar 

  • Olausson, T., Ahmad, S., Glavas, N., Bragg, P. D., and Rydström, J. (1992).EBEC Short Rep. 7 31.

    Google Scholar 

  • Olausson, T., Nordling, M., Karlsson, G., Meuller, J., Lundberg, L., and Rydström, J. (1992).Acta Physiol. Scand. 146 13–22.

    Google Scholar 

  • Ormerod, J. G., Ormerod, K. G., and Gest, H. (1961).Arch. Biochem. Biophys. 94 449–463.

    Google Scholar 

  • Osawa, S., Muto, A., Ohama, T., Andachi, T., Tanaka, R., and Yamao, F. (1990).Experientia 46 1097–1106.

    Google Scholar 

  • Palmer, T., Williams, R., Cotton, N. P. J., Thomas, C. M., and Jackson, J. B. (1993).Eur. J. Biochem. 211 663–669.

    Google Scholar 

  • Phelps, D. C., and Hatefi, Y. (1984a).Biochemistry 23 4475–4480.

    Google Scholar 

  • Phelps, D. C., and Hatefi, Y. (1984b).Biochemistry 23 6340–6344.

    Google Scholar 

  • Phelps, D. C., and Hatefi, Y. (1985).Biochemistry 24 3503–3507.

    Google Scholar 

  • Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988).Science 239 487–491.

    Google Scholar 

  • Saito, H., and Miura, K.-I. (1963).Biochim. Biophys. Acta 72 619–629.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R. (1977).Proc. Natl. Acad. Sci. USA 74 5463–5467.

    Google Scholar 

  • Shine, J., and Dalgarno, L. (1975).Nature (London) 254 34–38.

    Google Scholar 

  • Southern, E. M. (1975).J. Mol. Biol..98 503–517.

    Google Scholar 

  • Steinrücke, P., and Ludwig, B. (1993).FEMS Microbiol. Rev. 104 83–118.

    Google Scholar 

  • Vermeulen, A. N., Kok, J. J., Van den Boogaard, P., Dijkema, R. and Claessens, J. A. J. (1993).FEMS Microbiol. Lett. 110 223–230.

    Google Scholar 

  • Wakabayashi, S., and Hatefi, Y. (1987a).Biochem. Int. 15 667–675.

    Google Scholar 

  • Wakabayashi, S., and Hatefi, Y. (1987b).Biochem. Int. 15 915–924.

    Google Scholar 

  • Wierenga, R. K., Terpstra, P., and Hol, W. G. (1986).J. Mol. Biol. 187 101–107.

    Google Scholar 

  • Yamaguchi, M., and Hatefi, Y. (1989).Biochemistry 28 6050–6056.

    Google Scholar 

  • Yamaguchi, M., and Hatefi, Y. (1991).J. Biol. Chem. 266 5728–5735.

    Google Scholar 

  • Yamaguchi, M., and Hatefi, Y. (1993).J. Biol. Chem. 268 17871–17877.

    Google Scholar 

  • Yamaguchi, M., Hatefi, Y., Trach, K., and Hoch, J. A. (1988).J. Biol. Chem. 263 2761–2767.

    Google Scholar 

  • Yamaguchi, M., Wakabayashi, S., and Hatefi, Y. (1990).Biochemistry 29 4136–4143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, M., Hatefi, Y. Energy-transducing nicotinamide nucleotide transhydrogenase: Nucleotide sequences of the genes and predicted amino acid sequences of the subunits of the enzyme fromRhodospirillum rubrum . J Bioenerg Biomembr 26, 435–445 (1994). https://doi.org/10.1007/BF00762784

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762784

Key words

Navigation