Skip to main content
Log in

Hormone- and growth factor-stimulated NADH oxidase

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

An NADH oxidase activity of animal and plant plasma membrane is described that is stimulated by hormones and growth factors. In plasma membranes of cancer cells and tissues, the activity appears to be constitutively activated and no longer hormone responsive. With drugs that inhibit the activity, cells are unable to grow although growth inhibition may be more related to a failure of the cells to enlarge than to a direct inhibition of mitosis. The hormone-stimulated activity in plasma membranes of plants and the constitutively activated NADH oxidase in tumor cell plasma membranes is inhibited by thiol reagents whereas the basal activity is not. These findings point to a thiol involvement in the action of the activated form of the oxidase. NADH oxidase oxidation by Golgi apparatus of rat liver is inhibited by brefeldin A plus GDP. Brefeldin A is a macrolide antibiotic inhibitor of membrane trafficking. A model is presented where the NADH oxidase functions as a thiol-disulfide oxidoreductase activity involved in the formation and breakage of disulfide bonds. The thiol-disulfide interchange is postulated as being associated with physical membrane displacement as encountered in cell enlargement or in vesicle budding. The model, although speculative, does provide a basis for further experimentation to probe a potential function for this enzyme system which, under certain conditions, exhibits a hormone- and growth factor-stimulated oxidation of NADH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asard, H., Caubergs, R., Rnders, D., and DeGreef, J. A. (1987).Plant Sci. 53 109–119.

    Google Scholar 

  • Balch E. R., and Keller, D. S. (1986).J. Biol. Chem. 261 14690–14696.

    Google Scholar 

  • Balch, E. R., Wagner, K. R., and Keller, D. S. (1987).J. Cell Biol. 104 749–760.

    Google Scholar 

  • Baserga, R. (1985).The Biology of Cell Reproduction, Harvard University Press, Cambridge.

    Google Scholar 

  • Beckers, C. J. M., Keller, D. S., and Balch, W. E. (1987).Cell 50 523–534.

    Google Scholar 

  • Beckers, C. J. M., Plutner, H., Davidson, H. W., and Balch, W. (1990).J. Biol. Chem. 265 18298–18310.

    Google Scholar 

  • Brightman, A. O., Barr, R., Crane, F. L., and Morré, D. J. (1988).Plant Physiol. 86 1264–1269.

    Google Scholar 

  • Brightman, A. O., Wang, J., Miu, R. K.-M., Sun, I. L., Barr, R., Crane, F. L., and Morré, D. J. (1992).Biochim. Biophys. Acta 1105 109–117.

    Google Scholar 

  • Bruno, M., Brightman, A. O., Lawrence, J., Werderitsh, D., Morré, D. M., and Morré, D. J. (1992).Biochem. J. 284 625–628.

    Google Scholar 

  • Crane, F. L., Sun, I. L., Clark, M. G., Grebing, C., and Löw, H. (1985).Biochim. Biophys. Acta 811 233–264.

    Google Scholar 

  • Cross, A. R., and Jones, O. T. G. (1991).Biochim. Biophys. Acta 1057 218–298.

    Google Scholar 

  • Donaldson, J. G., Lippincott-Schwartz, J., Bloom, G. S., Kreis, T. E., and Klausner, R. D. (1990).J. Cell. Biol. 111 2295–2306.

    Google Scholar 

  • Donaldson, J. G., Finazze, D., and Klausner, R. D. (1992).Nature (London)360 350–352.

    Google Scholar 

  • Ellman, G. L. (1959).Arch. Biochem. Biophys. 82 70–77.

    Google Scholar 

  • Erdman, R., Wiebel, F. F., Flessau, A., Rytka, J., Beyer, A., Fröhlich, K.-U., and Kunau, W.-H. (1991).Cell 64 499–510.

    Google Scholar 

  • Farquhar, M. G. (1985).Annu. Rev. Cell Biol. 1 447–488.

    Google Scholar 

  • Fröhlich, K.-U., Fries, W. W., Rüdiger, M., Erdmann, R., Botatein, D., and Meeke, D. (1991).J. Cell Biol. 114 443–453.

    Google Scholar 

  • Gayda, D. P., Crane, F. L., Morré, D. J., and Löw, H. (1977).Proc. Indiana Acad. Sci. 86 385–390.

    Google Scholar 

  • Ghani, F., Mandel, R., and Ryser, H. J.-P. (1993).Mol. Biol. Cell 4 320a.

    Google Scholar 

  • Goldenberg, H., Crane, F. L., Morré, D. J., and Löw, H. (1979).J. Biol. Chem. 254 2491–2498.

    Google Scholar 

  • Helms, J. B., and Rothman, J. E. (1992).Nature (London)360 352–354.

    Google Scholar 

  • Higuchi, M., Shimada, M., Yamamoto, Y., Hayashi, T., Koga, T., and Kamio, Y. (1993).J. Gen. Microbiol. 139 2343–2351.

    Google Scholar 

  • Hynes, R. O. (1979).Surfaces of Normal and Malignant Cells, Wiley, New York.

    Google Scholar 

  • Kivirikko, K. I., and Myllylä, R. (1987).Methods Enzymol. 144 96–114.

    Google Scholar 

  • Koller, J., and Brownstein, M. J. (1987).Nature (London)325 542–545.

    Google Scholar 

  • Lockhart, J. A. (1965).J. Theor. Biol. 8 264–275.

    Google Scholar 

  • Mandel, R., Ryser, H. J.-P., Ghani, F., Wu, M., and Peak, D. (1993).Proc. Natl. Acad. Sci. USA 90 4112–4116.

    Google Scholar 

  • Miller, S. G., Carnell, L., and Moore, H.-P.H. (1990).J. Cell. Biol. 118 267–283.

    Google Scholar 

  • Mollenhauer, H. H., Morré, D. J., and Rowe, L. D. (1990).Biochim. Biophys. Acta 1051 250–258.

    Google Scholar 

  • Morré, D. J. (1994).Protoplasma, 180, 3–13.

    Google Scholar 

  • Morré, D. J., and Brightman, A. O. (1991).J. Bioenerg. Biomembr. 23 469–489.

    Google Scholar 

  • Morré, D. J., and Crane, F. L. (1990). InOxidoreduction at the Plasma Membrane: Relation to Growth and Transport. I. Animals (Crane, F. L., Morré, D. J., and Löw, H., eds.), CRC Press, Boca Raton, Florida, pp. 67–84.

    Google Scholar 

  • Morré, D. J., and Eisinger, W. R. (1968). InBiochemistry and Physiology of Plant Growth Substances (Wightman, F., and Setterfield, G., eds.), Runge Press Ltd., Ottawa, Canada, pp. 625–645.

    Google Scholar 

  • Morré, D. J., and Key, J. L. (1967). InExperimental Techniques in Developmental Biology (Wilt, F., and Wessles, N., eds.), T. Y. Cromwell, New York, pp. 575–593.

    Google Scholar 

  • Morré, D. J., and Morré, D. M. (1994). Manuscript in preparation.

  • Morré, D. J., Vigil, E. L., Frantz, C., Goldenberg, H., and Crane, F. L. (1978).Eur. J. Cell. Biol. (Cytobiologie)18 213–230.

    Google Scholar 

  • Morré, D. J., Sun, I., and Crane, F. L. (1985). InVitamins and Cancer: Human Cancer Prevention by Vitamins and Micronutrients (Myeskins, F. I., and Prasad, K. N., eds.), Humana Press, Clifton, New Jersey, pp. 83–92.

    Google Scholar 

  • Morré, D. J., Paulik, M., and Nowack, D. (1986a).Protoplasma 132 110–113.

    Google Scholar 

  • Morré, D. J., Navas, P., Penel, C., and Castillo, F. J. (1986b).Protoplasma 133 195–197.

    Google Scholar 

  • Morré, D. J., Crane, F. L., Sun, I. L., and Navas, P. (1987).Ann. N.Y. Acad. Sci. 498 153–171.

    Google Scholar 

  • Morré, D. J., Crane, F. L., Barr, R., Penel, C. and Wu, L.-Y. (1988a).Physiol. Plant. 72 236–240.

    Google Scholar 

  • Morré, D. J., Brightman, A. O., Wu, L.-Y., Barr, R., Leak, B., and Crane, F. L. (1988b).Physiol. Plant. 73 187–193.

    Google Scholar 

  • Morré, D. J., Brightman, A., Wang, J., Barr, R., and Crane, F. L. (1988c). InProc. NATO Advanced Research Workshop (Crane, F. L., Löw, H., and Morré, D. J., eds.), Alan R. Liss, New York, pp. 45–55.

    Google Scholar 

  • Morré, D. J., Crane, F. L., Eriksson, L. C., Löw, H., and Morré, D. M. (1991).Biochim. Biophys. Acta 1057 140–156.

    Google Scholar 

  • Morré, D. J., Morré, D. M., Paulik, M., Batova, A., Broome, A.-M., Pirisi, L., and Creek, K. E. (1992).Biochim. Biophys. Acta 1134 217–222.

    Google Scholar 

  • Morré, D. J., Davidson, M., Geilen, C., Lawrence, J., Flesher, G., Crowe, R., and Crane, F. L. (1993a).Biochem. J. 292 647–653.

    Google Scholar 

  • Morré, D. J., Brightman, A. O., Barr, R., Davidson, M., and Crane, F. L. (1993b).Plant Physiol. 102 595–602.

    Google Scholar 

  • Morré, D. J., Lawrence, J., Morré, D. M., and Paulik, M. (1993c).Mol. Biol. Cell 4 211a.

  • Morré, D. J., Brightman, A. O., Hidalgo, A., Navas, P., Lawrence, J., Wilkinson, F. E., Penel, C., and Morré, D. M. (1994a). Manuscript in preparation.

  • Morré, D. J., Paulik, M., Lawrence, J. L., and Morré, D. M. (1994b).FEBS Lett.,346 199–202.

    Google Scholar 

  • Navas, P., Nowack, D. D., and Morré, D. J. (1989).Cancer Res. 49 2147–2156.

    Google Scholar 

  • Njus, D., Knoth, J., Cook, C., and Kelley, P. M. (1983).J. Biol. Chem. 258 27–30.

    Google Scholar 

  • Noiva, R., and Lennarz, W. J. (1992).J. Biol. Chem. 267 3553–3556.

    Google Scholar 

  • Nowack, D. D., Morré, D. M., Paulik, M., Keenan, T. W., and Morré, D. J. (1987).Proc. Natl. Acad. Sci. USA 84 6098–6102.

    Google Scholar 

  • Paulik, M., Nowack, D. D., and Morré, D. J. (1988)J. Biol. Chem. 263 17738–17748.

    Google Scholar 

  • Peters, J.-M., Harris, J. R., Lustig, A., Muller, S., Engel, A., Volkers, S., and Franke, W. W. (1992).J. Mol. Biol. 223 557–571.

    Google Scholar 

  • Pupillo, P., Valenti, V., DeLuca, L., and Hertel, R. (1986).Plant Physiol. 80 384–389.

    Google Scholar 

  • Rodriguez, M., Moreau, P., Paulik, M., Lawrence, J., Morré, D. J., and Morré, D. M. (1992).Biochim. Biophys. Acta 1107 131–138.

    Google Scholar 

  • Rothman, J. E., and Warren, G. (1994).Curr. Biol. 4 220–233.

    Google Scholar 

  • Schindler, T., Bergfeld, R., Hohl, M., and Schopfer, P. (1994).Planta 192 404–413.

    Google Scholar 

  • Segal, A. W. (1989).J. Clin. Invest. 83 1785–1793.

    Google Scholar 

  • Silverstein, S. C., Steinman, R. M., and Cohn, Z. A. (1977).Annu. Rev. Biochem. 46 669–772.

    Google Scholar 

  • Simons, K., and Virta, H. (1987).EMBO J. 6 2241–2247.

    Google Scholar 

  • Srivastava, M., Duong, L. T., and Fleming, P. J. (1984).J. Biol. Chem. 259 8072–8075.

    Google Scholar 

  • Sun, I., Morré, D. J., Crane, F. L., Safranski, K., and Croze, E. M. (1984).Biochim. Biophys. Acta 797 266–275.

    Google Scholar 

  • Sun, I. L., Navas, P., Crane, F. L., Morré, D. J., and Löw, H. (1987).J. Biol. Chem. 262 15915–15921.

    Google Scholar 

  • Taiz, L. (1984).Annu. Rev. Plant Physiol. 35 585–657.

    Google Scholar 

  • Van Zastrow, M., Tritton, T. R., and Castle, J. D. (1984).J. Biol. Chem. 259 11746–11750.

    Google Scholar 

  • Vianello, A., and Macri, F. (1989).Biochim. Biophys. Acta 980 202–208.

    Google Scholar 

  • Warren, G., Woodman, P., Pypaert, M., and Smythe, E. (1988).Trends Biochem. Sci. 13 462–465.

    Google Scholar 

  • Wattenberg, B. (1991).J. Electron Microsc. Tech. 17 150–164.

    Google Scholar 

  • Wells, W. W., Xu, D. P., Yang, Y., and Roque, P. A. (1990).J. Biol. Chem. 265 15361–15364.

    Google Scholar 

  • Whaley, W. G. (1975).Cell Biol. Monographs, Vol. 2, Springer-Verlag, Berlin and New York.

    Google Scholar 

  • Wilson, D. W., Wilcox, C. A., Flynn, G. C., Chen, E., Kuang, W.-J., Henzel, M., Block, R., Ullrich, A., and Rothman, J. E. (1989).Nature (London)339 355–359.

    Google Scholar 

  • Zhang, L., and Morré, D. J. (1994). Results unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morré, D.J. Hormone- and growth factor-stimulated NADH oxidase. J Bioenerg Biomembr 26, 421–433 (1994). https://doi.org/10.1007/BF00762783

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762783

Key words

Navigation