Skip to main content
Log in

The action of ascorbate in vesicular systems

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Many effects of ascorbate center on its interactions with membranes from plant and animal cells. These actions can be studied using vesicles produced from phospholipid components (liposomes), by isolating naturally occurring vesicles, or by purifying particular membranes that form vesicles during the extraction process. Liposomes have provided information concerning the anti- and prooxidant properties of ascorbate and about how the water-soluble vitamin can have effects within the phospholipid bilayer. The involvement of ascorbate in transmembrane electron transport has been characterized in vesicles normally found in certain cells, such as, chromaffin granules, synaptosomes, glyoxisomes, peroxisomes, and clathrincoated vesicles. Redox activity using reducing power associated with ascorbate/ascorbate free radical (AFR) has been characterized in some of these vesicles and it appears to be mediated by ab-type cytochrome. Ascorbate also participates in the reduction of iron within clathrin-coated vesicles. Vesicles appearing during purification of plasma membranes have transmembrane electron transport, oxidoreductase activity with ascorbate/AFR as redox agents, and an ascorbate-reducibleb-type cytochrome. It is also possible that ascorbate-related redox activity exists at the tonoplast of plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghion, J., Loser, A. P., Moxhet, A., and Stevens, M. (1992).J. Photochem. Photobiol. B: Biol. 16, 37–46.

    Google Scholar 

  • Alcain, F. J., Buron, M. I., Villalba, J. M., and Navas, P. (1991).Biochim. Biophys. Acta 1073, 380–385.

    Google Scholar 

  • Apostal, I., Heinstein, P. F., and Low, P. S. (1989).Plant Physiol. 90, 109–116.

    Google Scholar 

  • Asard, H., Venken, M., Caubergs, R., Reijnders, W., Oltmann, F. L., and DeGreef, J. A. (1989).Plant Physiol. 90, 1077–1083.

    Google Scholar 

  • Asard, H., Horemans, N., and Caubergs, R. J. (1992).FEBS Lett. 306, 143–146.

    Google Scholar 

  • Askerlund, P., and Larsson, C. (1991).Plant Physiol. 96, 1178–1184.

    Google Scholar 

  • Askerlund, P., Larsson, C., and Widell, S. (1989).Physiol. Plant 76, 123–134.

    Google Scholar 

  • Askerlund, P., Laurent, P., Nakagawa, H., and Kader, J.-C. (1991).Plant Physiol. 95, 6–13.

    Google Scholar 

  • Block, G. (1993). InVitamins and Cancer Prevention, Vol. 3 (Bray, G. A., and Ryan, D. H., eds.), LSU Press, Baton Rouge, pp. 247–255.

    Google Scholar 

  • Böttger, M. (1989). InPlant Membrane Transport: The Current Position (Dainty, J., DeMichelis, M. I., Marré, E., and Rasi-Caldogno, F., eds.), Elsevier, Amsterdam, pp. 55–60.

    Google Scholar 

  • Bowditch, M. I., and Donaldson, R. P. (1990).Plant Physiol. 94, 531–537.

    Google Scholar 

  • Bradley, D. J., Kjellbom, P., and Lamb, C. J. (1992).Cell 70, 21–30.

    Google Scholar 

  • Brightman, A. O., and Morré, D. J. (1990). InOxidoreduction at the Plasma Membrane: Relation to Growth and Transport II (Morré, D. J., Crane, F. L., and Löw, H., eds.), CRC Press, Boca Raton, pp. 85–110.

    Google Scholar 

  • Chosak, E., Rubinstein, B., and Reinhold, L. (1991).Plant Sci. 77, 163–172.

    Google Scholar 

  • Dhariwal, K. R., Black, C. D. V., and Levine, M. (1991a).J. Biol. Chem. 266, 12908–12914.

    Google Scholar 

  • Dharimal, K. R., Shirvan, M., and Levine, M. (1991b).J. Biol. Chem. 266, 5384–5387.

    Google Scholar 

  • Diliberto, E. J., Jr., Daniels, A. J., and Viveros, O. H. (1991).Am. J. Clin. Nutr. 54, 1163S-1173S.

    Google Scholar 

  • Dini, L., DiGiulio, A., Pavan, A., Ravagnan, G., and Mossa, G. (1991).Biochim. Biophys. Acta 1062, 108–112.

    Google Scholar 

  • Donaldson, R. P., and Luster, D. G. (1991).Plant Physiol. 96, 669–674.

    Google Scholar 

  • Eipper, B. A., Stoffers, L. A., and Mains, R. E. (1992).Annu. Rev. Neurosci. 15, 57–85.

    Google Scholar 

  • Frei, B., Stocker, R., England, L., and Ames, B. N. (1990). InAntioxidants in Therapy and Preventative Medicine (Emerit, I., Packer, L., and Auclair, C., eds.), Plenum Press, New York, pp. 155–163.

    Google Scholar 

  • Fukuzawa, K., Seko, T., Minami, K., and Terao, J. (1993).Lipids 28, 497–503.

    Google Scholar 

  • González-Reyes, J. A., Döring, O., Navas, P., Obst, G., and Böttger, M. (1992).Biochim. Biophys. Acta 1098, 177–183.

    Google Scholar 

  • Hager, A., Brich, M., Bazlen, I. (1993).Planta 190, 120–126.

    Google Scholar 

  • Harnadek, G. J., Ries, E. A., Tse, D. G., Fitz, J. S., and Njus, D. (1992).Biochim. Biophys. Acta 1135 280–286.

    Google Scholar 

  • Hassidim, M., Rubinstein, B., Lerner, H. R., and Reinhold, L. (1987).Plant Physiol. 85 872–875.

    Google Scholar 

  • Hidalgo, A., García-Herdugo, G., González-Reyes, J. A., Morré, D. J., and Navas, P. (1991).Bot. Gaz. 152 282–288.

    Google Scholar 

  • Hoffman, K. E., Yanelli, K., and Bridges, K. R. (1991).Am. J. Clin. Nutr. 54 1188S-1192S.

    Google Scholar 

  • Horemans, N., Asard, H., and Caubergs, R. J. (1994).Plant Physiol.,104 1455–1458.

    Google Scholar 

  • Jalubar, V., Kelley, P. M., and Njus, D. (1991).J. Biol. Chem. 266 6878–6882.

    Google Scholar 

  • Kende, H. (1993).Annu. Rev. Plant Physiol. Plant Mol. Biol. 44 283–307.

    Google Scholar 

  • Kent, U. M., and Fleming, P. J. (1990).J. Biol. Chem. 265 16422–16427.

    Google Scholar 

  • Luster, D. G., and Buckout, T. J. (1988).Physiol. Plant. 73 339–347.

    Google Scholar 

  • Luster, D. G., and Buckout, T. J. (1989).Plant Physiol. 91 1014–1019.

    Google Scholar 

  • Luster, D. G., Bowditch, M. I., Eldridge, K. M., and Donaldson, R. P. (1988).Arch. Biochem. Biophys. 265 50–61.

    Google Scholar 

  • Matsuda, T., Gemba, T., Baba, A., and Iwata, H. (1990).Brain Res. 532 13–18.

    Google Scholar 

  • Morel, F., Doussiere, J., and Vignais, P. V. (1991).Eur. J. Biochem. 201 523–546.

    Google Scholar 

  • Morré, D. J., Sun, I., and Crane, F. L. (1985). InVitamins and Cancer—Human Cancer Prevention by Vitamins and Micronutrients (Meyskens, F. L., and Prasad, K. N., eds.), Humana Press, Clifton, New Jersey, pp. 83–92.

    Google Scholar 

  • Morré, D. J., Navas, P., Penel, C., and Castillo, F. J. (1986).Protoplasma 133 195–197.

    Google Scholar 

  • Mossa, G., DiGiulio, A., Dini, L., and Finazzi-Agrò, A. (1989).Biochim. Biophys. Acta 986 310–314.

    Google Scholar 

  • Navas, P., Estévez, A., Burón, M. I., Villalba, J. M., and Crane, F. L. (1988).Biochem. Biophys. Res. Commun. 154 1029–1034.

    Google Scholar 

  • Navas, P. (1990). InOxidoreduction at the Plasma Membrane. Relation to Growth and Transport II (Crane, F. L., Morré, D. J., and Löw, H. E., eds.), CRC Press, Boca Raton, pp. 111–120.

    Google Scholar 

  • Navas, P., Alcain, F. J., Burón, I., Rodriquiz-Alguilera, J.-C., Villalba, J. M., Morré, D. M., and Morré, D. J. (1992).FEBS Lett. 299 223–226.

    Google Scholar 

  • Niki, E. (1991).Am. J. Clin. Nutr. 54 1119S-1124S.

    Google Scholar 

  • Njus, D., and Kelley, P. M. (1993).Biochim. Biophys. Acta 1144 235–248.

    Google Scholar 

  • Nuñez, M.-T., Gaete, V., Watkins, J. A., and Glass, J. (1990).J. Biol. Chem. 265 6688–6692.

    Google Scholar 

  • Perin, M. S., Fried, V. A., Slaughter, C. A., and Sudhof, T. C. (1988).EMBO J. 7 2697–2703.

    Google Scholar 

  • Prescott, A. G. (1993).J. Exp. Bot. 44 849–861.

    Google Scholar 

  • Raguzzi, F., Lesuisse, E., and Crichton, R. R. (1988).FEBS Lett. 231 253–258.

    Google Scholar 

  • Rubinstein, B., and Stern, A. I. (1991).J. Bioenerg. Biomembr. 23 393–408.

    Google Scholar 

  • Schwacke, R., and Hager, A. (1992).Planta 187 136–141.

    Google Scholar 

  • Segal, A. W., and Abo, A. (1993).Trends Biochem. Sci. 18 43–47.

    Google Scholar 

  • Struglics, A., Fredlund, K. M., Rasmusson, A. G., and Moller, I. M. (1993).Physiol Plant. 88 19–28.

    Google Scholar 

  • Taiz, L., Gogarten, J. P., Kibak, H., Struve, I., Bernasconi, P., Rausch, T., and Taiz, S. L. (1989). InPlant Membrane Transport: The Current Position (Dainty, J., DeMichelis, M. I., Marre, E., and Rasi-Caldogno, F., eds.), Elsevier, Amsterdam, pp. 131–137.

    Google Scholar 

  • Takahama, U. (1986).Biochim. Biophys. Acta 882 445–451.

    Google Scholar 

  • Takahama, U., and Egashira, T. (1991).Phytochemistry 30 73–77.

    Google Scholar 

  • Tang, X.-Y., Wang, H., Brandt, A. S., and Woodson, W. R. (1993).Plant Mol. Biol. 23 1151–1164.

    Google Scholar 

  • Villalba, J. M., Canalejo, A., Burón, M. I., Córdoba, F., and Navas, P. (1993).Biochem. Biophys. Res. Commun. 192 707–713.

    Google Scholar 

  • Watkins, J. A., Nuñez, M.-T., Gaete, V., Alvarez, O., and Glass, J. (1991).J. Membr. Biol. 119 141–149.

    Google Scholar 

  • Watkins, J. A., Altazan, J. D., Elder, P., Li, C.-Y., Nuñez, M.-T., Cui, X.-X., and Glass, J. (1992).Biochemistry 31 5820–5830.

    Google Scholar 

  • Wink, M. (1993).J. Exp. Bot. 44 231–246.

    Google Scholar 

  • Wu, L. N. Y., Sauer, G. R., Genge, B. R., and Wuthier, R. E. (1989).J. Biol. Chem. 264 21346–21355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinstein, B. The action of ascorbate in vesicular systems. J Bioenerg Biomembr 26, 385–392 (1994). https://doi.org/10.1007/BF00762779

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762779

Key words

Navigation