Magnesium transport by mitochondria

Abstract

The pathways for the uptake and extrusion of Mg2+ by mitochondria are not well defined. the present evidence suggests that uptake occurs by nonspecific diffusive pathways in response to elevated membrane potential. There is disagreement as to some of the properties of Mg2+ efflux from mitochondria, but the reaction resembles K+ efflux in many ways and may occur in exchange for H+. Matrix free magnesium ion concentration, [Mg2+], can be measured using fluorescent probes and is set very close to cytosol [Mg2+] by a balance between influx and efflux and by the availability of ligands, such as Pi. There are indications that matrix [Mg2+] may be under hormonal control and that it contributes to the regulation of mitochondrial metabolism and transport reactions.

This is a preview of subscription content, log in to check access.

References

  1. Akerman, K. E. O. (1981).J. Bioenerg. Biomembr. 13 133–139.

    Google Scholar 

  2. Altschuld, R. A., Hohl, C. M., Castillo, L. C., Garleb, A. A., Starling, R. C., and Brierley, G. P. (1992).Am. J. Physiol. 262 H1699-H1704.

    Google Scholar 

  3. Altschuld, R. A., Jung, D. W., Phillips, R. M., Narayan, P., Castillo, L. C., Whitaker, T. E., Hensley, J., Hohl, C. M., and Brierley, G. P. (1994).Am. J. Physiol. 266 H1103-H1110.

    Google Scholar 

  4. Aprille, J. R. (1993).J. Bioenerg. Biomembr. 25 473–481.

    Google Scholar 

  5. Baysal, K., Jung, D. W., Gunter, K. K., Gunter, T. E., and Brierley, G. P. (1994).Am. J. Physiol. 266 C800-C808.

    Google Scholar 

  6. Birch, N. J., ed. (1993).Magnesium and the Cell, Academic Press, New York.

    Google Scholar 

  7. Bogucka, K., and Wojtczak, L. (1971).Biochem. Biophys. Res. Commun. 44 1330–1338.

    Google Scholar 

  8. Bond, M., Vadasz, G., Somlyo, A. V. and Somlyo, A. P. (1987).J. Biol. Chem. 262 15630–15636.

    Google Scholar 

  9. Brierley, G. P., Bachmann, E., and Green, D. E. (1962).Proc. Natl. Acad. Sci. USA. 48 1928–1935.

    Google Scholar 

  10. Brierley, G. P., Murer, E., Bachmann, E., and Green, D. E. (1963).J. Biol. Chem. 238 3482–3489.

    Google Scholar 

  11. Brierley, G. P., Hunter, G. R., and Jacobus, W. E. (1967).J. Biol. Chem. 242 2192–2198.

    Google Scholar 

  12. Brierly, G. P., Davis, M., and Jung, D. W. (1987).Arch. Biochem. Biophys. 253 322–332.

    Google Scholar 

  13. Brierley, G. P., Davis, M. H., and Jung, D. W. (1988).J. Bioenerg. Biomembr. 264 417–427.

    Google Scholar 

  14. Brown, G. C., and Brand, M. D. (1986).Biochem. J. 234 75–81.

    Google Scholar 

  15. Chacon, E., Reece, J. M., Nieminen, A.-L., Zahrebelski, G., Herman, B., and Lemasters, J. J. (1994).Biophys. J. 66 942–952.

    Google Scholar 

  16. Corkey, B. E., Duszynski, J., Rich, T. L., Matschinsky, B., and Williamson, J. R. (1986).J. Biol. Chem. 261 2567–2574.

    Google Scholar 

  17. Crompton, M., Capano, M., and Carafoli, E. (1976).Biochem. J. 13 735–742.

    Google Scholar 

  18. Davis, M. H., Altschuld, R. A., Jung, D. W., and Brierley, G. P. (1987).Biochem. Biophys. Res. Commun. 149 40–45.

    Google Scholar 

  19. Diwan, J. J. (1988).Biochim. Biophys. Acta. 895 155–165.

    Google Scholar 

  20. Diwan, J. J., Daze, M., Richardson, R., and Aronson, D. (1979).Biochemistry 18 2590–2595.

    Google Scholar 

  21. Flatman, P. W. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 197–216.

    Google Scholar 

  22. Garlid, K. D. (1980).J. Biol. Chem. 255 11273–11279.

    Google Scholar 

  23. Garlid, K. D. (1988). InIntegration of Motochondrial Function (Lemasters, J.J., Hackenbrock, C. R., Thurman, R. G., and Westerhoff, H. V., eds.), Plenum Press, New York, pp. 257–276.

    Google Scholar 

  24. Grubbs, R. D., and Maguire, M. E. (1986).J. Biol. Chem. 261 12550–12554.

    Google Scholar 

  25. Grubbs, R. D., Snavely, M. D., Hmiel, S. P., and Maguire, M. E. (1989).Method. Enzymol. 173 546–563.

    Google Scholar 

  26. Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. 258 C755-C786.

    Google Scholar 

  27. Gunter, T. E., Restrepo, D., and Gunter, K. K. (1988).Am. J. Physiol. 255 C304-C310.

    Google Scholar 

  28. Gunther, T., and Vorman, J. (1992).FEBS Lett. 297 132–134.

    Google Scholar 

  29. Gupta, R. K., Gupta, P., and Moore, R. D. (1984).Annu. Rev. Biophys. Bioeng. 13 221–246.

    Google Scholar 

  30. Haugland, R. P. (1992).Handbook of Fluorescence Probes and Research Chemicals, 5th edn., Molecular Probes Inc., Eugene, Oregon.

    Google Scholar 

  31. Headrick, J. P., and Willis, R. J. (1991).J. Mol. Cell. Cardiol. 23 991–999.

    Google Scholar 

  32. Hille, B. (1984).Ionic Channels of Excitable Membranes, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  33. Hutson, S. M., Berkich, D. A., Williams, G. D., LaNoue, K. F., and Briggs, R. W. (1989).Biochemistry 28 4325–4332.

    Google Scholar 

  34. Jung, D. W., and Brierley, G. P. (1986).J. Biol. Chem. 261 6408–6415.

    Google Scholar 

  35. Jung, D. W., and Brierley, G. P. (1992)Magnesium Trace Elem. 10 151–164.

    Google Scholar 

  36. Jung, D. W., Davis, M.H., and Brierley, G. P. (1989).Anal. Biochem. 178 348–354.

    Google Scholar 

  37. Jung, D. W., Apel, L., and Brierley, G. P. (1990).Biochemistry 29 4121–4128.

    Google Scholar 

  38. Kun, E. (1976).Biochemistry 15 2328–2336.

    Google Scholar 

  39. Lattanzio, F. A., Jr., and Bartschat, D. K. (1991).Biochem. Biophys. Res. Commun. 177 91–194.

    Google Scholar 

  40. Levy, L. A., Murphy, E., Raju, B., and London, R. E. (1988).Biochemistry 27 4041–4048.

    Google Scholar 

  41. Lin, J., Pan, L., and Chen, S. I. (1993).J. Biol. Chem. 268 22210–22214.

    Google Scholar 

  42. London, R. E. (1991).Annu. Rev. Physiol. 53 241–258.

    Google Scholar 

  43. Maguire, M. (1990).Met. Ions Biol. Syst. 26 135–153.

    Google Scholar 

  44. Maguire, M. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 157–176.

    Google Scholar 

  45. Marfella, C., Romani, A., and Scarpa, A. (1994).Biophys. J. 66, A333.

  46. Masiakos, P. T., Williams, G. D., Berkich, D. A., Smith, M. B., and LaNoue, K. F. (1991).Biochemistry 30 8351–8357.

    Google Scholar 

  47. Masini, A., Ceccarelli-Stanzari, D., and Muscatello, V. (1983).J. Bioenerg. Biomembr. 15 217–234.

    Google Scholar 

  48. McGuigan, J. A. S., Buri, A., Chen, S., Illner, D. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 91–120.

    Google Scholar 

  49. Mitchell, P. (1966).Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research Ltd., Bodwin.

    Google Scholar 

  50. Mitchell, P. (1968).Chemiosmotic Coupling and Energy Transduction, Glynn Research, Ltd., Bodmin.

    Google Scholar 

  51. Morelle, B., Salmon, J.-M., Virgo, J., and Viallet, P. (1994).Anal. Biochem. 218 170–176.

    Google Scholar 

  52. Mota de Freitas, D., and Dorus, E. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 51–79.

    Google Scholar 

  53. Murphy, E., Freudenrich, C. C., and Liberman, M. (1991).Annu. Rev. Physiol. 53 273–287.

    Google Scholar 

  54. Nosek, M. T., Dransfield, D. T., and Aprille, J. R. (1990).J. Biol. Chem. 265 8444–8450.

    Google Scholar 

  55. Raju, B., Murphy, E., Levy, L. A., Hall, R. D., and London, R. E. (1989).Am. J. Physiol. 256 C540-C548.

    Google Scholar 

  56. Romani, A., and Scarpa, A. (1992).Arch. Biochem. Biophys. 298 1–12.

    Google Scholar 

  57. Romani, A., Dowell, E., and Scarpa, A. (1991).J. Biol. Chem. 266 24376–24384.

    Google Scholar 

  58. Romani, A., Marfella, C., and Scarpa, A. (1993a).Circ. Res. 72 1139–1148.

    Google Scholar 

  59. Romani, A., Marfella, C., and Scarpa, A. (1993b).J. Biol. Chem. 268 15489–15495.

    Google Scholar 

  60. Rugolo, M., and Zoccarato, F. (1984).J. Neurochem. 42 1127–1130.

    Google Scholar 

  61. Rutter, G. A., Osbaldeston, N. J., McCormack, J. G., and Denton, R. M. (1990).Biochem. J. 271 627–634.

    Google Scholar 

  62. Scarpa, A. (1979).Method. Enzymol. 56 301–338.

    Google Scholar 

  63. Schuster, S., and Olson, M. S. (1974).J. Biol. Chem. 249 7151–7158.

    Google Scholar 

  64. Senior, A. E., (1979).J. Biol. Chem. 254 11319–11322.

    Google Scholar 

  65. Sigel, H., and Sigel, A., eds. (1990).Metal Ions in Biological Systems Vol. 26,Compendium on Magnesium and Its Role in Biology, Nutrition, and Physiology, Marcel Dekker, New York.

    Google Scholar 

  66. Siliprandi, D., Toninello, A., Zoccarato, F., Rugolo, M., and Siliprandi, N. (1978).J. Bioenerg. Biomembr. 10 1–11.

    Google Scholar 

  67. Silverman, H. S., Di Lisa, F., Hui, R. C., Miyata, H., Sollott, S. J., Hansford, R. G., Lakatta, E. G., and Stern, M. D. (1994).Am. J. Physiol. 266 C222-C233.

    Google Scholar 

  68. Szmacinski, H., and Lakowicz, J. R. (1993).Biophys. J. 64, A108.

    Google Scholar 

  69. Veloso, D., Guynn, R. D., Oskarsson, M., and Veech, R. L. (1973).J. Biol. Chem. 248 4811–4819.

    Google Scholar 

  70. White, R. E., and Hartzell, H. C. (1989).Biochem. Pharmacol. 38 859–867.

    Google Scholar 

  71. Williams, R. J. P. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 15–30.

    Google Scholar 

  72. Wolf, F. I., DiFrancesco, A., and Cittadini, A. (1994).Arch Biochem. Biophys. 308 335–341.

    Google Scholar 

  73. Zhang, G. H., and Melvin, J. E. (1992).J. Biol. Chem. 267 20721–20727.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jung, D.W., Brierley, G.P. Magnesium transport by mitochondria. J Bioenerg Biomembr 26, 527–535 (1994). https://doi.org/10.1007/BF00762737

Download citation

Keywords

  • Magnesium
  • Organic Chemistry
  • Cytosol
  • Membrane Potential
  • Bioorganic Chemistry