Journal of Bioenergetics and Biomembranes

, Volume 26, Issue 5, pp 527–535 | Cite as

Magnesium transport by mitochondria

  • Dennis W. Jung
  • Gerald P. Brierley


The pathways for the uptake and extrusion of Mg2+ by mitochondria are not well defined. the present evidence suggests that uptake occurs by nonspecific diffusive pathways in response to elevated membrane potential. There is disagreement as to some of the properties of Mg2+ efflux from mitochondria, but the reaction resembles K+ efflux in many ways and may occur in exchange for H+. Matrix free magnesium ion concentration, [Mg2+], can be measured using fluorescent probes and is set very close to cytosol [Mg2+] by a balance between influx and efflux and by the availability of ligands, such as Pi. There are indications that matrix [Mg2+] may be under hormonal control and that it contributes to the regulation of mitochondrial metabolism and transport reactions.


Magnesium Organic Chemistry Cytosol Membrane Potential Bioorganic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akerman, K. E. O. (1981).J. Bioenerg. Biomembr. 13 133–139.Google Scholar
  2. Altschuld, R. A., Hohl, C. M., Castillo, L. C., Garleb, A. A., Starling, R. C., and Brierley, G. P. (1992).Am. J. Physiol. 262 H1699-H1704.Google Scholar
  3. Altschuld, R. A., Jung, D. W., Phillips, R. M., Narayan, P., Castillo, L. C., Whitaker, T. E., Hensley, J., Hohl, C. M., and Brierley, G. P. (1994).Am. J. Physiol. 266 H1103-H1110.Google Scholar
  4. Aprille, J. R. (1993).J. Bioenerg. Biomembr. 25 473–481.Google Scholar
  5. Baysal, K., Jung, D. W., Gunter, K. K., Gunter, T. E., and Brierley, G. P. (1994).Am. J. Physiol. 266 C800-C808.Google Scholar
  6. Birch, N. J., ed. (1993).Magnesium and the Cell, Academic Press, New York.Google Scholar
  7. Bogucka, K., and Wojtczak, L. (1971).Biochem. Biophys. Res. Commun. 44 1330–1338.Google Scholar
  8. Bond, M., Vadasz, G., Somlyo, A. V. and Somlyo, A. P. (1987).J. Biol. Chem. 262 15630–15636.Google Scholar
  9. Brierley, G. P., Bachmann, E., and Green, D. E. (1962).Proc. Natl. Acad. Sci. USA. 48 1928–1935.Google Scholar
  10. Brierley, G. P., Murer, E., Bachmann, E., and Green, D. E. (1963).J. Biol. Chem. 238 3482–3489.Google Scholar
  11. Brierley, G. P., Hunter, G. R., and Jacobus, W. E. (1967).J. Biol. Chem. 242 2192–2198.Google Scholar
  12. Brierly, G. P., Davis, M., and Jung, D. W. (1987).Arch. Biochem. Biophys. 253 322–332.Google Scholar
  13. Brierley, G. P., Davis, M. H., and Jung, D. W. (1988).J. Bioenerg. Biomembr. 264 417–427.Google Scholar
  14. Brown, G. C., and Brand, M. D. (1986).Biochem. J. 234 75–81.Google Scholar
  15. Chacon, E., Reece, J. M., Nieminen, A.-L., Zahrebelski, G., Herman, B., and Lemasters, J. J. (1994).Biophys. J. 66 942–952.Google Scholar
  16. Corkey, B. E., Duszynski, J., Rich, T. L., Matschinsky, B., and Williamson, J. R. (1986).J. Biol. Chem. 261 2567–2574.Google Scholar
  17. Crompton, M., Capano, M., and Carafoli, E. (1976).Biochem. J. 13 735–742.Google Scholar
  18. Davis, M. H., Altschuld, R. A., Jung, D. W., and Brierley, G. P. (1987).Biochem. Biophys. Res. Commun. 149 40–45.Google Scholar
  19. Diwan, J. J. (1988).Biochim. Biophys. Acta. 895 155–165.Google Scholar
  20. Diwan, J. J., Daze, M., Richardson, R., and Aronson, D. (1979).Biochemistry 18 2590–2595.Google Scholar
  21. Flatman, P. W. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 197–216.Google Scholar
  22. Garlid, K. D. (1980).J. Biol. Chem. 255 11273–11279.Google Scholar
  23. Garlid, K. D. (1988). InIntegration of Motochondrial Function (Lemasters, J.J., Hackenbrock, C. R., Thurman, R. G., and Westerhoff, H. V., eds.), Plenum Press, New York, pp. 257–276.Google Scholar
  24. Grubbs, R. D., and Maguire, M. E. (1986).J. Biol. Chem. 261 12550–12554.Google Scholar
  25. Grubbs, R. D., Snavely, M. D., Hmiel, S. P., and Maguire, M. E. (1989).Method. Enzymol. 173 546–563.Google Scholar
  26. Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. 258 C755-C786.Google Scholar
  27. Gunter, T. E., Restrepo, D., and Gunter, K. K. (1988).Am. J. Physiol. 255 C304-C310.Google Scholar
  28. Gunther, T., and Vorman, J. (1992).FEBS Lett. 297 132–134.Google Scholar
  29. Gupta, R. K., Gupta, P., and Moore, R. D. (1984).Annu. Rev. Biophys. Bioeng. 13 221–246.Google Scholar
  30. Haugland, R. P. (1992).Handbook of Fluorescence Probes and Research Chemicals, 5th edn., Molecular Probes Inc., Eugene, Oregon.Google Scholar
  31. Headrick, J. P., and Willis, R. J. (1991).J. Mol. Cell. Cardiol. 23 991–999.Google Scholar
  32. Hille, B. (1984).Ionic Channels of Excitable Membranes, Sinauer, Sunderland, Massachusetts.Google Scholar
  33. Hutson, S. M., Berkich, D. A., Williams, G. D., LaNoue, K. F., and Briggs, R. W. (1989).Biochemistry 28 4325–4332.Google Scholar
  34. Jung, D. W., and Brierley, G. P. (1986).J. Biol. Chem. 261 6408–6415.Google Scholar
  35. Jung, D. W., and Brierley, G. P. (1992)Magnesium Trace Elem. 10 151–164.Google Scholar
  36. Jung, D. W., Davis, M.H., and Brierley, G. P. (1989).Anal. Biochem. 178 348–354.Google Scholar
  37. Jung, D. W., Apel, L., and Brierley, G. P. (1990).Biochemistry 29 4121–4128.Google Scholar
  38. Kun, E. (1976).Biochemistry 15 2328–2336.Google Scholar
  39. Lattanzio, F. A., Jr., and Bartschat, D. K. (1991).Biochem. Biophys. Res. Commun. 177 91–194.Google Scholar
  40. Levy, L. A., Murphy, E., Raju, B., and London, R. E. (1988).Biochemistry 27 4041–4048.Google Scholar
  41. Lin, J., Pan, L., and Chen, S. I. (1993).J. Biol. Chem. 268 22210–22214.Google Scholar
  42. London, R. E. (1991).Annu. Rev. Physiol. 53 241–258.Google Scholar
  43. Maguire, M. (1990).Met. Ions Biol. Syst. 26 135–153.Google Scholar
  44. Maguire, M. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 157–176.Google Scholar
  45. Marfella, C., Romani, A., and Scarpa, A. (1994).Biophys. J. 66, A333.Google Scholar
  46. Masiakos, P. T., Williams, G. D., Berkich, D. A., Smith, M. B., and LaNoue, K. F. (1991).Biochemistry 30 8351–8357.Google Scholar
  47. Masini, A., Ceccarelli-Stanzari, D., and Muscatello, V. (1983).J. Bioenerg. Biomembr. 15 217–234.Google Scholar
  48. McGuigan, J. A. S., Buri, A., Chen, S., Illner, D. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 91–120.Google Scholar
  49. Mitchell, P. (1966).Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research Ltd., Bodwin.Google Scholar
  50. Mitchell, P. (1968).Chemiosmotic Coupling and Energy Transduction, Glynn Research, Ltd., Bodmin.Google Scholar
  51. Morelle, B., Salmon, J.-M., Virgo, J., and Viallet, P. (1994).Anal. Biochem. 218 170–176.Google Scholar
  52. Mota de Freitas, D., and Dorus, E. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 51–79.Google Scholar
  53. Murphy, E., Freudenrich, C. C., and Liberman, M. (1991).Annu. Rev. Physiol. 53 273–287.Google Scholar
  54. Nosek, M. T., Dransfield, D. T., and Aprille, J. R. (1990).J. Biol. Chem. 265 8444–8450.Google Scholar
  55. Raju, B., Murphy, E., Levy, L. A., Hall, R. D., and London, R. E. (1989).Am. J. Physiol. 256 C540-C548.Google Scholar
  56. Romani, A., and Scarpa, A. (1992).Arch. Biochem. Biophys. 298 1–12.Google Scholar
  57. Romani, A., Dowell, E., and Scarpa, A. (1991).J. Biol. Chem. 266 24376–24384.Google Scholar
  58. Romani, A., Marfella, C., and Scarpa, A. (1993a).Circ. Res. 72 1139–1148.Google Scholar
  59. Romani, A., Marfella, C., and Scarpa, A. (1993b).J. Biol. Chem. 268 15489–15495.Google Scholar
  60. Rugolo, M., and Zoccarato, F. (1984).J. Neurochem. 42 1127–1130.Google Scholar
  61. Rutter, G. A., Osbaldeston, N. J., McCormack, J. G., and Denton, R. M. (1990).Biochem. J. 271 627–634.Google Scholar
  62. Scarpa, A. (1979).Method. Enzymol. 56 301–338.Google Scholar
  63. Schuster, S., and Olson, M. S. (1974).J. Biol. Chem. 249 7151–7158.Google Scholar
  64. Senior, A. E., (1979).J. Biol. Chem. 254 11319–11322.Google Scholar
  65. Sigel, H., and Sigel, A., eds. (1990).Metal Ions in Biological Systems Vol. 26,Compendium on Magnesium and Its Role in Biology, Nutrition, and Physiology, Marcel Dekker, New York.Google Scholar
  66. Siliprandi, D., Toninello, A., Zoccarato, F., Rugolo, M., and Siliprandi, N. (1978).J. Bioenerg. Biomembr. 10 1–11.Google Scholar
  67. Silverman, H. S., Di Lisa, F., Hui, R. C., Miyata, H., Sollott, S. J., Hansford, R. G., Lakatta, E. G., and Stern, M. D. (1994).Am. J. Physiol. 266 C222-C233.Google Scholar
  68. Szmacinski, H., and Lakowicz, J. R. (1993).Biophys. J. 64, A108.Google Scholar
  69. Veloso, D., Guynn, R. D., Oskarsson, M., and Veech, R. L. (1973).J. Biol. Chem. 248 4811–4819.Google Scholar
  70. White, R. E., and Hartzell, H. C. (1989).Biochem. Pharmacol. 38 859–867.Google Scholar
  71. Williams, R. J. P. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 15–30.Google Scholar
  72. Wolf, F. I., DiFrancesco, A., and Cittadini, A. (1994).Arch Biochem. Biophys. 308 335–341.Google Scholar
  73. Zhang, G. H., and Melvin, J. E. (1992).J. Biol. Chem. 267 20721–20727.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Dennis W. Jung
    • 1
  • Gerald P. Brierley
    • 1
  1. 1.Department of Medical BiochemistryThe Ohio State UniversityColumbus

Personalised recommendations