Skip to main content
Log in

Oxygen diffusion-concentration in erythrocyte plasma membranes studied by the fluorescence quenching of anionic and cationic pyrene derivatives

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Fluorescence quenching by oxygen of cationic [pyrene-(CH2) n N(CH3) +3 ;n=1, 4, and 11] and anionic [pyrene-(CH2) n CO 2 ,n=3, 8, 11, and 15] probes was investigated in erythrocyte plasma membranes (leaky) in order to assess the ability of oxygen molecules to interact with solutes located at different positions in the membrane. The pseudounimolecular quenching rate constants measured increase, both for cationic and anionic probes, whenn increases. These results are interpreted in terms of an increased oxygen solubility toward the center of the membrane interior, and imply that lateral diffusion contributes more than transverse diffusion to total oxygen mobility. For all of the probes considered, quenching rates increase whenn-alkanols are added. The effect observed increases whenn decreases and when the size of then-alkanol alkyl chain increases. Arrhenius-type plots for the quenching rate constants show noticeable downward curvatures. Average (0–40°C) activation energies are ∼6 kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EPM:

erythrocyte plasma membrane

PMTMA:

(1-pyrenyl)methyltrimethyl-ammonium

PBTMA:

4-(1-pyrenyl)butyltrimethylammonium

PUTMA:

11-(1-pyrenyl)-undecyltrimethylammonium

PB:

4-(1-pyrenyl)butanoate

PN:

9-(1-pyrenyl)nonanoate

PD:

12-(1-pyrenyl)dodecanoate

PHD:

16-(1-pyrenyl)hexadecnoate

References

  • Abuin, E. B., Lissi, E. A., Aravena, D., Zanocco, A., and Macuer, M. (1988).J. Colloid Interface Sci. 122, 201–208.

    Google Scholar 

  • Afzal, J., Ashlock, S. R., Fung, B. M., and O'Rear, E. A. (1986).J. Phys. Chem. 90, 3019–3022.

    Google Scholar 

  • Blatt, E., and Sawyer, W. H. (1985).Biochim. Biophys. Acta 822, 43–62.

    Google Scholar 

  • Dong, D. C., and Winnik, M. A. (1982).Photochem. Photobiol. 35, 17–21.

    Google Scholar 

  • Fishkoff, S., and Vanderkooi, J. M. (1975).J. Gen. Physiol. 65, 663–676.

    Google Scholar 

  • Geiger, H. W., and Turro, N. J. (1975).Photochem. Photobiol. 22, 273–276.

    Google Scholar 

  • Geiger, M. W., and Turro, N. J. (1977).Photochem. Photobiol. 26, 221–224.

    Google Scholar 

  • Hanahan, D. J., and Ekholm, J. E. (1974).Methods Enzymol. 31, 168–172.

    Google Scholar 

  • Houslay, M. D., and Stanley, D. D. (1982).Dynamics of Biological Membranes, John Wiley and Sons, New York, pp. 126–128.

    Google Scholar 

  • Lakowicz, J. R. (1980).J. Biochem. Biophys. Methods 2, 90–119.

    Google Scholar 

  • Lakowicz, J. R. (1982). InHemoglobin and Oxygen Binding (Cho, C.,et al., eds.), Vol. 1, pp. 443–448.

  • Lakowicz, J. R., and Weber, G. (1973).Biochemistry 12, 4161–4170.

    Google Scholar 

  • Lowry, O. H., Bosebrough, N. H., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.

    Google Scholar 

  • Rowe, E. S., Fernandes, A., and Khalifah, R. G. (1987).Biochem. Biophys. Acta 905, 151–164.

    Google Scholar 

  • Rubio, M. A., Araya, L., Abuin, E. B., and Lissi, E. A. (1985).An. Asoc. Quim. Argent. 73, 301–309.

    Google Scholar 

  • Thulborn, K. R., and Sawyer, W. H. (1978).Biochim. Biophys. Acta 471, 125–140.

    Google Scholar 

  • Tristman, S. N., and Moynihan, M. M. (1981).Biochim. Biophys. Acta 898, 109–120.

    Google Scholar 

  • Tsuchida, E., Nishida, H., and Yuasa, M. (1984).J. Chem. Soc. [D], 96–98.

  • Turro, N. J., Aikawa, M., and Yekta, A. (1979).Chem. Phys. Lett. 64, 473–478.

    Google Scholar 

  • Vachon, A., Lecomte, C., Berleur, F., Roman, V., Fatome, M., and Braquet, P. (1987).J. Chem. Soc. Faraday Trans. 1,83, 177–190.

    Google Scholar 

  • Vanderkooi, J., and McLaughlin, A. (1976). InBiochemical Fluorescence Concepts (Chen, R., and Edelhoch, H., eds.), Ch. 19, pp. 737–765.

  • Vaughan, W., and Weber, G. (1970).Biochemistry 10, 464–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lissi, E.A., Caceres, T. Oxygen diffusion-concentration in erythrocyte plasma membranes studied by the fluorescence quenching of anionic and cationic pyrene derivatives. J Bioenerg Biomembr 21, 375–385 (1989). https://doi.org/10.1007/BF00762728

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762728

Key Words

Navigation