Skip to main content
Log in

Extensive Ca2+ release from energized mitochondria induced by disulfiram

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The effect of the alcohol-deterrent drug, disulfiram, on mitochondrial Ca2+ content was studied. Addition of this drug (20 µM) to mitochondria induces a complete loss of accumulated Ca2+. The calcium release is accompanied by a collapse of the transmembrane potential, mitochondrial swelling, and a diminution of the NAD(P)H/NAD(P) radio. These effects of disulfiram depend on Ca2+ accumulation; thus, ruthenium red reestablished the membrane δψ and prevents the oxidation of pyridine nucleotides. The binding of disulfiram to the membrane sulfhydryls appeared to depend on the metabolic state of mitochondria, as well as on the mitochondrial configuration. In addition, it is shown that modification of 9 nmol -SH groups per mg protein suffices to induce the release of accumulated Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akerman, K. E., and Wikström, M. F. K. (1976).FEBS Lett. 68, 191–197.

    Google Scholar 

  • Beatrice, M. C., Palmer, J. W., and Pfeifrer, D. F. (1980).J. Biol. Chem. 255, 8663–8671.

    Google Scholar 

  • Bellomo, G., Jewell, S. A., and Orrenius, S. (1982).J. Biol. Chem. 257, 11,558–11,562.

    Google Scholar 

  • Bellomo, G., Martino, A., Richelmi, P., Moore, G. A., Jewell, S. A., and Orrenius, S. (1984).Eur. J. Biochem. 140, 1–6.

    Google Scholar 

  • Brierley, G. P., Knight, V. A., and Settlemire, C. T. (1968).J. Biol. Chem. 243, 5035–5043.

    Google Scholar 

  • Chávez, E., and Holguín, J. A. (1988).J. Biol. Chem. 263, 3582–3587.

    Google Scholar 

  • Chávez, E., and Jay, D. (1987).J. Bioenerg. Biomembr. 19, 571–580.

    Google Scholar 

  • Chávez, E., Briones, R., Michel, B., Bravo, C., and Jay, D. (1985).Arch. Biochem. Biophys. 242, 493–497.

    Google Scholar 

  • Chávez, E., Jay, D., and Bravo, C. (1987).J. Bioenerg. Biomembr. 19, 285–295.

    Google Scholar 

  • Ellman, G. L. (1959).Arch. Biochem. Biophys. 22, 70–77.

    Google Scholar 

  • Fossa, A. A., White, J. F., and Carlson, G. P. (1982).Toxicol. Appl. Pharmacol. 66, 109–117.

    Google Scholar 

  • Graham, W. D. (1951).J. Pharm. Pharmacol. 3, 160–164.

    Google Scholar 

  • Harris, E. J. (1979).Biochem. J. 178, 673–680.

    Google Scholar 

  • Hunter, D. F., and Haworth, R. A. (1974).Arch. Biochem. Biophys. 195, 453–459.

    Google Scholar 

  • Jurkowitz, M. S., and Brierley, G. P. (1984).J. Bioenerg. Biomembr. 14, 435–449.

    Google Scholar 

  • Jurkowitz, M. S., Geibuhler, T., Jung, D. W., and Brierley, G. P. (1983).Arch. Biochem. Biophys. 223, 120–128.

    Google Scholar 

  • Keiner, M. J., and Alexander, N. M. (1986).J. Biol. Chem. 261, 1636–1641.

    Google Scholar 

  • Kendrick, N. C. (1976).Ann. Biochem. 76, 487–501.

    Google Scholar 

  • Klingenberg, M. (1984). InThe Enzymes of Biological Membranes (Martonosi, A. N., ed.), Vol. 4, Plenum, London/New York, pp. 511–533.

    Google Scholar 

  • Lehninger, A. L., Vercesi, A. E., and Babanunmi, E. (1978).Proc. Natl. Acad. Sci. USA 75, 1690–1694.

    Google Scholar 

  • Lötscher, H. R., Wintherhalter, K. H., Carafoli, E., and Richter, C. (1980).J. Biol. Chem. 255, 9325–9330.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.

    Google Scholar 

  • Nicholls, D. G., and Crompton, M. (1980).FEBS Lett. 111, 261–268.

    Google Scholar 

  • Palmer, J. W., and Pfeiffer, D. R. (1981).J. Biol. Chem. 256, 6742–6750.

    Google Scholar 

  • Pfeiffer, D. R., Schmid, P. C., Beatrice, M. C., and Schmid, H. H. O. (1979).J. Biol. Chem. 254, 11,485–11,494.

    Google Scholar 

  • Ramachandran, C., and Bygrace, F. L. (1978).Biochem. J. 174, 613–620.

    Google Scholar 

  • Serio, R., Long, R. A., Taylor, J. E., Tolamn, R. L., Weppelman, R. M., and Solson, G. (1984).Toxicol. Appl. Pharmacol. 72, 333–342.

    Google Scholar 

  • Stoner, C. D., and Sirak, H. D. (1973).J. Cell Biol. 56, 51–64.

    Google Scholar 

  • Stripp, B., Green, F. E., and Gillete, J. R. (1969).J. Pharmacol. Exp. Ther. 170, 347–354.

    Google Scholar 

  • Toninello, A., Siliprandi, D., and Siliprandi, N. (1983).Biochem. Biophys. Res. Commun. 111, 792–797.

    Google Scholar 

  • Valenzuela, F., and Vasalle, M. (1983).Cardiovasc. Res. 17, 608–619.

    Google Scholar 

  • Valenzuela, F., and Vasalle, M. (1985).J. Electrocardiol. 18, 21–34.

    Google Scholar 

  • Vercesi, A. E. (1984).Biochem. Biophys. Res. Commun. 119, 305–310.

    Google Scholar 

  • Vercesi, A. E. (1987).Arch. Biochem. Biophys. 252, 171–178.

    Google Scholar 

  • Zoccarato, F., Rugolo, M., Siliprandi, D., and Siliprandi, N. (1981).Eur. J. Biochem. 114, 195–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chávez, E., Zazueta, C. & Bravo, C. Extensive Ca2+ release from energized mitochondria induced by disulfiram. J Bioenerg Biomembr 21, 335–345 (1989). https://doi.org/10.1007/BF00762725

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762725

Key Words

Navigation