Skip to main content
Log in

Na+-driven bacterial flagellar motors

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such asBacillus subtilis andEscherichia coli and the other is the Na+-driven type found in alkalophilicBacillus and marineVibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asher, C., Cragoe, E. J., Jr., and Garty, H. (1987).Biochim. Biophys. Acta 778, 129–138.

    Google Scholar 

  • Benos, D. J. (1982).Am. J. Physiol. 242, C131-C145.

    Google Scholar 

  • Booth, I. R. (1985).Microbiol. Rev. 49, 359–378.

    Google Scholar 

  • Chernyak, B. V., Dibrov, P. A., Glagolev, A. N., Yu, M., and Skulachev, V. P. (1983).FEBS Lett. 164, 38–42.

    Google Scholar 

  • Dibrov, P. A., Kostyrko, V. A., Lazarova, R. L., Skulachev, V. P., and Smirnova, I. A. (1986).Biochim. Biophys. Acta 850, 449–457.

    Google Scholar 

  • Eisenbach, M., and Adler, J. (1981).J. Biol. Chem. 256, 8807–8814.

    Google Scholar 

  • Glagolev, A. N., and Skulachev, V. P. (1978).Nature (London) 272, 280–282.

    Google Scholar 

  • Guffanti, A. A., and Eisenstein, H. C. (1983).J. Gen. Microbiol. 129, 3239–3242.

    Google Scholar 

  • Hirota, N., and Imae, Y. (1983).J. Biol. Chem. 258, 10577–10581.

    Google Scholar 

  • Hirota, N., Kitada, M., and Imae, Y. (1981).FEBS Lett. 132, 278–280.

    Google Scholar 

  • Horikoshi, K., and Akiba, T. (1982). InAlkalophilic Microorganisms, Springer-Verlag, New York.

    Google Scholar 

  • Imae, Y., Matsukura, H., and Kobayasi, S. (1986).Methods Enzymol. 125, 582–592.

    Google Scholar 

  • Khan, S., and Macnab, R. M. (1980).J. Mol. Biol. 138, 599–614.

    Google Scholar 

  • Khan, S., and Berg, H. C. (1983).Cell 32, 913–919.

    Google Scholar 

  • Kitada, M., Guffanti, A. A., and Krulwich, T. A. (1982).J. Bacteriol. 152, 1096–1104.

    Google Scholar 

  • Koyama, N., Takinishi, H., and Nosoh, Y. (1983).FEMS Microbiol. Lett. 16, 213–216.

    Google Scholar 

  • Krulwich, T. A. (1983).Biochim. Biophys. Acta 726, 245–264.

    Google Scholar 

  • Krulwich, T. A. (1986).J. Membr. Biol. 89, 113–125.

    Google Scholar 

  • LaBelle, E. F., Woodward, P. L., and Cragoe, E. J., Jr. (1984).Biochim. Biophys. Acta 778, 129–158.

    Google Scholar 

  • Läuger, P. (1988).Biophys. J. 53, 53–65.

    Google Scholar 

  • Lowe, G., Meister, M., and Berg, H. C. (1987).Nature (London) 325, 637–640.

    Google Scholar 

  • Macnab, R. M. (1987). InEscherichia coli and Salmonella typhimurium (Neidhardt, F. C., ed.), Vol. 2, American Society for Microbiology, Washington, D.C., pp. 732–759.

    Google Scholar 

  • Manson, M. D., Tedesco, P., Berg, H. C., Harold, F. M., and Van Der Drift, C. (1977).Proc. Natl. Acad. Sci. USA 74, 3060–3064.

    Google Scholar 

  • Manson, M. D., Tedesco, P. M., and Berg, H. C. (1980).J. Mol. Biol. 138, 541–561.

    Google Scholar 

  • Matsukura, H., and Imae, Y. (1987).Biochim. Biophys. Acta 904, 301–308.

    Google Scholar 

  • Matsuura, S., Shioi, J., and Imae, Y. (1977).FEBS Lett. 82, 187–190.

    Google Scholar 

  • Matsuura, S., Shioi, J., Imae, Y., and Iida, S. (1979).J. Bacteriol. 140, 28–36.

    Google Scholar 

  • Oosawa, F., and Hayashi, S. (1986).Adv. Biophys. 22, 151–183.

    Google Scholar 

  • Prince, R. C. (1988).Trends Biochem. Sci. 13, 76–77.

    Google Scholar 

  • Shioi, J., Matsuura, S., and Imae, Y. (1980).J. Bacteriol. 144, 891–897.

    Google Scholar 

  • Silverman, M., and Simon, M. I. (1974).Nature (London) 249, 73–74.

    Google Scholar 

  • Sugiyama, S., Matsukura, H., and Imae, Y. (1985).FEBS Lett. 182, 265–268.

    Google Scholar 

  • Sugiyama, S., Matsukura, H., Koyama, N., Nosoh, Y., and Imae, Y. (1986).Biochim. Biophys. Acta 852, 38–45.

    Google Scholar 

  • Sugiyama, S., and Cragoe, E. J., Jr., and Imae, Y. (1988).J. Biol. Chem. 263, 8215–8219.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1982).J. Biol. Chem. 257, 10007–10014.

    Google Scholar 

  • Tokuda, H., Asano, M., Shimamura, Y., Unemoto, T., Sugiyama, S., and Imae, Y. (1988).J. Biochem. 103, 650–655.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imae, Y., Atsumi, T. Na+-driven bacterial flagellar motors. J Bioenerg Biomembr 21, 705–716 (1989). https://doi.org/10.1007/BF00762688

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762688

Key Words

Navigation