Skip to main content
Log in

Respiratory Na+ pump and Na+-dependent energetics inVibrio alginolyticus

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The marine bacteriumVibrio alginolyticus was found to possess the respiratory Na+ pump that generates an electrochemical potential of Na+, which plays a central role in bioenergetics ofV. alginolyticus, as a direct result of respiration. Mutants defective in the Na+ pump revealed that one of the two kinds of NADH: quinone oxidoreductase requires Na+ for activity and functions as the Na+ pump. The Na+ pump composed of three subunits was purified and reconstituted into liposomes. Generation of membrane potential by the reconstituted proteoliposomes required Na+. The respiratory Na+ pump coupled to the NADH: quinone oxidoreductase was found in wide varieties of Gramnegative marine bacteria belonging to the generaAlcaligenes, Alteromonas, andVibrio, and showed a striking similarity in the mode of electron transfer and enzymic properties. Na+ extrusion seemed to be coupled to a dismutation reaction, which leads to the formation of quinol and quinone from semi-quinone radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asano, M., Hayashi, M., Unemoto, T., and Tokuda, H. (1985).Agric. Biol. Chem. 49, 2813–2817.

    Google Scholar 

  • Booth, I. R. (1985).Microbiol. Rev. 49, 359–378.

    Google Scholar 

  • Chernyak, B. K., Dibrov, P. A., Glagolev, A. N., Sherman, M. Yu., and Skulachev, V. P. (1983).FEBS Lett. 164, 38–42.

    Google Scholar 

  • Dimroth, P. (1980).FEBS Lett. 122, 234–236.

    Google Scholar 

  • Dimroth, P. (1987).Microbiol. Rev. 51, 320–340.

    Google Scholar 

  • Hayashi, M., and Unemoto, T. (1986).FEBS Lett. 202, 327–330.

    Google Scholar 

  • Kakinuma, Y., and Unemoto, T. (1985).J. Bacteriol. 163, 1293–1295.

    Google Scholar 

  • Ken-Dror, S., Preger, R., and Avi-Dor, Y. (1986a).Arch. Biochem. Biophys. 244, 122–127.

    Google Scholar 

  • Ken-Dror, S., Lanyi, J. K., Schobert, B., Silver, B., and Avi-Dor, Y. (1986b).Arch. Biochem. Biophys. 244, 766–772.

    Google Scholar 

  • Krulwich, T. A. (1986).J. Membr. Biol. 89, 113–125.

    Google Scholar 

  • Lanyi, J. K. (1979).Biochim. Biophys. Acta 559, 377–397.

    Google Scholar 

  • Matsushita, K., Ohnishi, T., and Kaback, H. R. (1987).Biochemistry 26, 7732–7737.

    Google Scholar 

  • Mitchell, P. (1961).Nature (London) 191, 144–148.

    Google Scholar 

  • Mitchell, P. (1973).J. Bioenerg. 4, 63–91.

    Google Scholar 

  • Nakamura, T., Tokuda, H., and Unemoto, T. (1982).Biochim. Biophys. Acta 692, 389–396.

    Google Scholar 

  • Nakamura, T., Tokuda, H., and Unemoto, T. (1984).Biochim. Biophys. Acta 776, 330–336.

    Google Scholar 

  • Padan, E., Zilberstein, D., and Schuldiner, S. (1981).Biochim. Biophys. Acta 650, 151–166.

    Google Scholar 

  • Plack, R. H., Jr., and Rosen, B. P. (1980).J. Biol. Chem. 255, 3824–3825.

    Google Scholar 

  • Schuldiner, S., and Fishkes, H. (1978).Biochemistry 17, 706–711.

    Google Scholar 

  • Sprott, G. D., Drozdowski, J. P., Martin, E. L., and MacLeod, R. A. (1975).Can. J. Microbiol. 21, 43–50.

    Google Scholar 

  • Tokuda, H. (1983).Biochem. Biophys. Res. Commun. 114, 113–118.

    Google Scholar 

  • Tokuda, H. (1984).FEBS Lett. 176, 125–128.

    Google Scholar 

  • Tokuda, H., and Kaback, H. R. (1977).Biochemistry 16, 2130–2136.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1981).Biochem. Biophys. Res. Commun. 102, 265–271.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1982).J. Biol. Chem. 257, 10007–10014.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1983).J. Bacteriol. 156, 636–643.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1984).J. Biol. Chem. 259, 7785–7790.

    Google Scholar 

  • Tokuda, H., and Kogure, K. (1989).J. Gen. Microbiol. 135, 703–709.

    Google Scholar 

  • Tokuda, H., Nakamura, T., and Unemoto, T. (1981).Biochemistry 20, 4198–4203.

    Google Scholar 

  • Tokuda, H., Sugasawa, M., and Unemoto, T. (1982).J. Biol. Chem. 257, 788–794.

    Google Scholar 

  • Tokuda, H., Udagawa, T., and Unemoto, T. (1985).FEBS Lett. 183, 95–98.

    Google Scholar 

  • Tokuda, H., Udagawa, T., Asano, M., Yamamoto, T., and Unemoto, T. (1987).FEBS Lett. 215, 335–338.

    Google Scholar 

  • Tokuda, H., Asano, M., Shimamura, Y., Unemoto, T., Sugiyama, S., and Imae, Y. (1988).J. Biochem. 103, 650–655.

    Google Scholar 

  • Tsuchiya, T., and Shinoda, S. (1985).J. Bacteriol. 162, 794–798.

    Google Scholar 

  • Tsuchiya, T., Raven, J., and Wilson, T. H. (1977).Biochem. Biophys. Res. Commun. 76, 26–31.

    Google Scholar 

  • Udagawa, T., Unemoto, T., and Tokuda, H. (1986).J. Biol. Chem. 261, 2616–2622.

    Google Scholar 

  • Unemoto, T., Hayashi, M., and Hayashi, M. (1977).J. Biochem. 82, 1389–1395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokuda, H. Respiratory Na+ pump and Na+-dependent energetics inVibrio alginolyticus . J Bioenerg Biomembr 21, 693–704 (1989). https://doi.org/10.1007/BF00762687

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762687

Key Words

Navigation