Skip to main content
Log in

The Na+ cycle of extreme alkalophiles: A secondary Na+/H+ antiporter and Na+/solute symporters

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Extremely alkalophilic bacteria that grow optimally at pH 10.5 and above are generally aerobic bacilli that grow at mesophilic temperatures and moderate salt levels. The adaptations to alkalophily in these organisms may be distinguished from responses to combined challenges of high pH together with other stresses such as salinity or anaerobiosis. These alkalophiles all possess a simple and physiologically crucial Na+ cycle that accomplishes the key task of pH homeostasis. An electrogenic, secondary Na+/H+ antiporter is energized by the electrochemical proton gradient formed by the proton-pumping respiratory chain. The antiporter facilitates maintenance of a pHin that is two or more pH units lower than pHout at optimal pH values for growth. It also largely converts the initial electrochemical proton gradient formed by respiration into an electrochemical sodium gradient that energizes motility as well as a plethora of Na+/solute symporters. These symporters catalyze solute accumulation and, importantly, reentry of Na+. The extreme nonmarine alkalophiles exhibit no primary sodium pumping dependent upon either respiration or ATP. ATP synthesis is not part of their Na+ cycle. Rather, the specific details of oxidative phosphorylation in these organisms are an interesting analogue of the same process in mitochondria, and may utilize some common features to optimize energy transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassalina, M., Damiano, E., and LeBlanc, G. (1984).Biochemistry 23, 1015–1022.

    Google Scholar 

  • Clejan, S., and Krulwich, T. A. (1988).Biochim. Biophys. Acta 946, 40–48.

    Google Scholar 

  • Clejan, S., Krulwich, T. A., Mondrus, K. R., and Seto-Young, D. (1986).J. Bacteriol. 168, 334–340.

    Google Scholar 

  • Dibrov, P. A., Lazarova, R. L., Skulachev, V. P., and Verkhovskaya, M. L. (1986).Biochim. Biophys. Acta 850, 458–465.

    Google Scholar 

  • Ferguson, S. J. (1985).Biochim. Biophys. Acta 811, 47–95.

    Google Scholar 

  • Garcia, M. L., Guffanti, A. A., and Krulwich, T. A. (1983).J. Bacteriol. 156, 1151–1157.

    Google Scholar 

  • Guffanti, A. A. (1983).FEMS Microbiol. Lett. 17, 307–310.

    Google Scholar 

  • Guffanti, A. A., and Krulwich, T. A. (1988).J. Biol. Chem. 263, 14748–14752.

    Google Scholar 

  • Guffanti, A. A., Susman, P., Blanco, R., and Krulwich, T. A. (1978).J. Biol. Chem. 253, 708–715.

    Google Scholar 

  • Guffanti, A. A., Blanco, R., and Krulwich, T. A. (1979).J. Biol. Chem. 254, 1033–1037.

    Google Scholar 

  • Guffanti, A. A., Bornstein, R. F., and Krulwich, T. A. (1981).Biochim. Biophys. Acta 635, 619–630.

    Google Scholar 

  • Guffanti, A. A., Fuchs, R. T., Schneier, M., Chiu, E., and Krulwich, T. A. (1984).J. Biol. Chem. 259, 2971–2975.

    Google Scholar 

  • Guffanti, A. A., Chiu, E., and Krulwich, T. A. (1985).Arch. Biochem. Biophys. 239, 327–333.

    Google Scholar 

  • Guffanti, A. A., Finkelthal, O., Hicks, D. B., Falk, L., Sidhu, A., Garro, A., and Krulwich, T. A. (1986).J. Bacteriol. 167, 766–773.

    Google Scholar 

  • Hackenbrock, C. R., Chazotte, B., and Gupte, S. S. (1986).J. Bioenerg. Biomembr. 18, 331–368.

    Google Scholar 

  • Hicks, D. B., and Krulwich, T. A. (1986).J. Biol. Chem. 261, 12896–12902.

    Google Scholar 

  • Hirota, N., and Imae, Y. (1983).J. Biol. Chem. 258, 10577–10581.

    Google Scholar 

  • Hirota, N., Kitada, M., and Imae, Y. (1981).FEBS Lett. 132, 278–280.

    Google Scholar 

  • Ken-Dror, S., Preger, R., and Avi-Dor, Y. (1986).Arch. Biochem. Biophys. 244, 122–127.

    Google Scholar 

  • Kitada, M., and Horikoshi, K. (1977).J. Bacteriol. 131, 784–788.

    Google Scholar 

  • Kitada, M., and Krulwich, T. A. (1984).J. Bacteriol. 158, 963–967.

    Google Scholar 

  • Kitada, M., Guffanti, A. A., and Krulwich, T. A. (1982).J. Bacteriol. 152, 1096–1104.

    Google Scholar 

  • Kitada, M., Lewis, R. J., and Krulwich, T. A. (1983).J. Bacteriol. 154, 330–335.

    Google Scholar 

  • Koga, Y., Nishihara, M., and Morii, O. (1982).J. Univ. Occup. Health 4, 227–240.

    Google Scholar 

  • Koyama, N., Kiyomiya, A., and Nosoh, Y. (1976).FEBS Lett. 72, 77–78.

    Google Scholar 

  • Koyama, N., Koshiya, K., and Nosoh, Y. (1980).Arch. Biochem. Biophys. 199, 103–109.

    Google Scholar 

  • Koyama, N., Ishikawa, Y., and Nosoh, Y. (1986).FEMS Microbiol. Lett. 34, 195–198.

    Google Scholar 

  • Koyama, N., Wakabayashi, K., and Nosoh, Y. (1987).Biochim. Biophys. Acta 898, 293–298.

    Google Scholar 

  • Krulwich, T. A., and Guffanti, A. A. (1989).Annu. Rev. Microbiol. 43, 435–463.

    Google Scholar 

  • Krulwich, T. A., Guffanti, A. A., Bornstein, R. F., and Hoffstein, J. (1982).J. Biol. Chem. 257, 1885–1889.

    Google Scholar 

  • Krulwich, T. A., Federbush, J. G., and Guffanti, A. A. (1984).J. Biol. Chem. 260, 4055–4058.

    Google Scholar 

  • Krulwich, T. A., Agus, R., Schneier, M., and Guffanti, A. A. (1985).J. Bacteriol. 162, 768–772.

    Google Scholar 

  • Krulwich, T. A., Guffanti, A. A., Fong, M. Y., Falk, L., and Hicks, D. B. (1986).J. Bacteriol. 165, 884–889.

    Google Scholar 

  • Krulwich, T. A., Hicks, D. B., Seto-Young, D., and Guffanti, A. A. (1988).CRC Crit. Rev. Microbiol. 16, 15–36.

    Google Scholar 

  • Lancaster, J. R., Jr. (1988). InAdvances in Membrane Biochemistry and Bioenergetics (Kim, C. H., Tedeschi, H., Diwan, J. J., and Salerno, J. C., eds.), Plenum Press, New York, pp. 363–387.

    Google Scholar 

  • Laubinger, W., and Dimroth, P. (1987).Eur. J. Biochem. 168, 475–480.

    Google Scholar 

  • Laubinger, W., and Dimroth, P. (1988).Biochemistry 27, 7531–7537.

    Google Scholar 

  • Lewis, R. J., Belkina, S., and Krulwich, T. A. (1980).Biochem. Biophys. Res. Commun. 95, 857–863.

    Google Scholar 

  • Lewis, R. J., Prince, R., Dutton, P. L., Knaff, D., and Krulwich, T. A. (1981).J. Biol. Chem. 256, 10543–10549.

    Google Scholar 

  • Lewis, R. J., Krulwich, T. A., Reynafarje, B., and Lehninger, A. L. (1983).J. Biol. Chem. 258, 2109–2111.

    Google Scholar 

  • Mandel, K. G., Guffanti, A. A., and Krulwich, T. A. (1980).J. Biol. Chem. 255, 7391–7396.

    Google Scholar 

  • Matsukura, H., and Imae, Y. (1987).Biochim. Biophys. Acta 904, 301–308.

    Google Scholar 

  • McLaggan, D., Selwyn, M. J., and Dawson, A. P. (1984).FEBS Lett. 165, 254–258.

    Google Scholar 

  • Rottenberg, H. (1985).Mod. Cell. Biol. 4, 47–83.

    Google Scholar 

  • Rottenberg, H. (1988).Eur. Bioenerg. Conf. 5, 9.

    Google Scholar 

  • Seto-Young, D., Garcia, M. L., and Krulwich, T. A. (1985).J. Biol. Chem. 260, 11393–11395.

    Google Scholar 

  • Sugiyama, S., Matsukura, H., and Imae, Y. (1985).FEBS Lett. 182, 265–268.

    Google Scholar 

  • Sugiyama, S., Matsukura, H., Koyama, N., Nosoh, Y., and Imae, Y. (1986).Biochim. Biophys. Acta 852, 38–45.

    Google Scholar 

  • Sugiyama, S., Cragoe, E. J., Jr., and Imae, Y. (1988).J. Biol. Chem. 263, 8215–8219.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1982).J. Biol. Chem. 257, 10007–10014.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1984).J. Biol. Chem. 259, 7785–7790.

    Google Scholar 

  • Tokuda, H., Asano, M., Shimamura, Y., Unemoto, T., Sugiyama, S., and Imae, Y. (1988).J. Biochem. 103, 650–655.

    Google Scholar 

  • Westerhoff, H., Melandri, B. A., Venturoli, G., Azzone, G. F., and Kell, D. B. (1984).Biochim. Biophys. Acta 768, 257–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krulwich, T.A., Guffanti, A.A. The Na+ cycle of extreme alkalophiles: A secondary Na+/H+ antiporter and Na+/solute symporters. J Bioenerg Biomembr 21, 663–677 (1989). https://doi.org/10.1007/BF00762685

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762685

Key Words

Navigation