Journal of Bioenergetics and Biomembranes

, Volume 25, Issue 3, pp 307–312 | Cite as

Inhibition of the mitochondrial calcium uniporter by antibodies against a 40-kDa glycorproteinT

  • Nils-Erik L. Saris
  • Tatjana V. Sirota
  • Ismo Virtanen
  • Kaija Niva
  • Timo Penttilä
  • Ludmila P. Dolgachova
  • Galina D. Mironova
Original Articles

Abstract

Polyclonal rabbit antibodies against a Ca2+-binding mitochondrial glycoprotein were found to inhibit the uniporter-mediated transport of Ca2+ in mitoplasts prepared from rat liver mitochondria. Spermine, a modulator of the uniporter, decreased the inhibition. This glycoprotein ofM r 40,000, isolated from beef heart mitochondria and earlier shown to form Ca2+-conducting channels in black-lipid membranes, thus is a good candidate for being a component of the uniporter. Antibody-IgG was found to specifically bind to mitochondria in human fibroblasts.

Key words

Calcium transport fibroblast glycoprotein heart mitochondria spermine uniporter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allshire, A., and Saris, N.-E. L. (1986). InManganese in Metabolism and Enzyme Function (Schramm, J. L., and Wedler, F. C., eds.), Academic Press, New York, pp. 51–63.Google Scholar
  2. Ambudkar, I. S., Kima, P. E., and Shamoo, A. E. (1984).Biochim. Biophys. Acta 771, 165–170.Google Scholar
  3. Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., and Skulachev, V. P. (1988).J. Cell Biol. 107, 481–495.Google Scholar
  4. Carafoli, E., and Sottocasa, G. L. (1974). InDynamics of Energy-Transducing Membranes (Ernster, L.,et al., eds.), Academic Press, New York, pp. 293–307.Google Scholar
  5. Dolgachova, L. P., and Scarga, Y. Y. (1984) In Proceedings of the Symposium on the Metabolic regulation of the Physiological State, Russian Academy of Sciences, Pushchino, p. 55.Google Scholar
  6. Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. 258, C755-C786.Google Scholar
  7. Herrmann, T. R., Jayaweera, A. R., Ambudkar, I. S., and Shamoo, A. E. (1984).Biochim, Biophys. Acta,774, 11–18.Google Scholar
  8. Jeng, A. Y., and Shamoo, A. D. (1980a).J. Biol. Chem. 255, 6904–6903.Google Scholar
  9. Jeng, A. Y., and Shamoo, A. D. (1980b).J. Biol. Chem. 255, 6897–6903.Google Scholar
  10. Johnson, L. V., Walch, M. L., and Chen, L.-B. (1980).Proc. Natl. Acad. Sci. USA 770, 990–995.Google Scholar
  11. Igbavboa, U., and Pfeiffer, D. R. (1991).J. Biol. Chem. 266, 4283–4287.Google Scholar
  12. Kröner, H. (1988).Arch. Biochem. Biophys. 267, 205–210.Google Scholar
  13. Lehninger, A. L. (1971).Biochem. Biophys. Res. Commun. 42, 312–318.Google Scholar
  14. Levrat, C., Ardail, D., Morelis, R., and Louisot, P. (1989).Int. J. Biochem. 21, 265–278.Google Scholar
  15. Levrat, C., Ardail, D., and Louisot, P. (1990).Biochem. Int. 20, 1–11.Google Scholar
  16. Mironova, G. D., and Utesheve, Zh. A. (1989).Ukr. Biochem. J. 61, 48–54.Google Scholar
  17. Mironova, G. D., Sirota, T. V., Pronevich, L. A., Trofimenko, N. V., Mironov, G. P., Grigorjev, P. A., and Kondrashova, M. N. (1982).J. Bioenerg. Biomembr. 14, 213–225.Google Scholar
  18. Nicchitta, C. V., and Williamson, J. R. (1984).J. Biol. Chem. 249, 12978–12983.Google Scholar
  19. Panfili, E., Sandri, G., Sottocasa, G. L., Lunazzi, G., Liut, G., and Graziossi, G. (1976).Nature (London) 264, 185–186.Google Scholar
  20. Panfili, E., Sandri, G., Liut, G., Stancher, B., and Sottocasa, G. L. (1983). InCalcium-Binding Proteins (de Bernard, B.,et al., eds.), Elsevier, Amsterdam, pp. 347–354.Google Scholar
  21. Prestipino, G. F., Coccarelli, D., Conti, F., and Carafoli, E. (1976).FEBS Lett. 45, 9103–9107.Google Scholar
  22. Rosier, R. N., and Gunter, T. E. (1980).FEBS Lett. 109, 99–103.Google Scholar
  23. Saris, N.-E. L., and Åkerman, K. E. O. (1980).Curr. Top. Bioenerg. 10, 104–179.Google Scholar
  24. Saris, N.-E. L., and Allshire, A. (1989).Methods Enzymol. 174, 68–85.Google Scholar
  25. Saris, N.-E. L., and Kröner, H. (1990).J. Bioenerg. Biomembr. 22, 81–90.Google Scholar
  26. Schnaitman, C., and Greenawalt, J. W. (1968).J. Cell Biol. 38, 158–175.Google Scholar
  27. Sirota, T. V., Sirota, N. P., and Mironova, G. D. (1987).Ukr. Biochem. J. 59, 42–46.Google Scholar
  28. Sokolove, P. M., and Brenza, J. M. (1983).Arch. Biochem. Biophys. 221, 404–416.Google Scholar
  29. Sottocasa, G. L., Sandri, G., Panfili, E., de Bernard, B., Gazzotti, P., Vasington, F. D., and Carafoli, E. (1972).Biochem. Biophys. Res. Commun. 47, 808–813.Google Scholar
  30. Sottocasa, G. L., Sandri, G., Panfili, E., Liut, G., and Saris, N.-E. L. (1981). InVectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (Palmieri, F.,et al., eds.), Elsevier/North-Holland, Amsterdam, pp. 319–322.Google Scholar
  31. Zazueta, C., Holguín, J. A., and Ramírez, J. (1991).J. Bioenerg. Biomembr. 23, 889–902.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Nils-Erik L. Saris
    • 1
  • Tatjana V. Sirota
    • 2
  • Ismo Virtanen
    • 3
  • Kaija Niva
    • 1
  • Timo Penttilä
    • 1
  • Ludmila P. Dolgachova
    • 4
  • Galina D. Mironova
    • 2
  1. 1.Department of Medical ChemistryUniversity of HelsinkiHelsinkiFinland
  2. 2.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia
  3. 3.Department of AnatomyUniversity of HelsinkiHelsinkiFinland
  4. 4.Institute of Theoretical and Experimental BiophysicsAcademy of Sciences of RussiaRussia

Personalised recommendations