General Relativity and Gravitation

, Volume 16, Issue 3, pp 293–296 | Cite as

Scalar density concomitants of a metric and a bivector

  • Ricardo J. Noriega
  • Claudio G. Schifini
Research Articles


We find the most general form of a scalar density concomitant of a metric tensor and a bivector. This, together with previous theorems, gives a complete characterization of the tensor concomitants of a metric and a bivector.


Differential Geometry Previous Theorem Complete Characterization Scalar Density Tensor Concomitant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hlavatý, V. (1952). The elementary basic principles of the unified theory of relativity, A,J. Rat. Mech. Anal.,1, 539.Google Scholar
  2. 2.
    Kerrighan, B. (1981). Arbitrary tensor concomitants of a bivector and a metric in a space-time manifold,Gen. Rel. Grav.,13, 19.Google Scholar
  3. 3.
    Noriega, R. J. Tensorial concomitants of a metric and a bivector (to appear inMath. Notae).Google Scholar
  4. 4.
    Rund, H. (1966). Variational problems involving combined tensor fields,Abh. Math. Sem. Univ. Hamburg,29, 243.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Ricardo J. Noriega
    • 1
  • Claudio G. Schifini
    • 1
  1. 1.Departamento de Matemática, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresRepública Argentina

Personalised recommendations