General Relativity and Gravitation

, Volume 16, Issue 3, pp 217–224 | Cite as

Spatially homogeneous cosmological models

  • A. K. Banerjee
  • N. O. Santos
Research Articles


We study nonviscous and viscous fluids in Bianchi types II, VIII, and IX space-times under the restriction that the ratio of shear to expansion be constant.


Differential Geometry Cosmological Model Viscous Fluid Bianchi Type Homogeneous Cosmological Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Misner, C. W. (1968).Astrophys. J.,151, 431.Google Scholar
  2. 2.
    Klimek, Z. (1973).Acta Cosmologica,2, 49.Google Scholar
  3. 3.
    Murphy, G. (1973).Phys. Rev. D,8, 4231.Google Scholar
  4. 4.
    Belinsky, U. A., and Khalatnikov, I. M. (1976).Sov. Phys. JETP,42, 205.Google Scholar
  5. 5.
    Weinberg, S. (1972).Gravitation and Cosmology (John Wiley and Sons, New York), p. 594.Google Scholar
  6. 6.
    Collins, C. B., Glass, E. N., and Wilkinson, D. A. (1980).Gen. Rel. Grav.,12, 805.Google Scholar
  7. 7.
    Collins, C. B. (1971).Commun. Math. Phys.,23, 137.Google Scholar
  8. 8.
    Maartens, R., and Nel, S. D. (1978).Commun. Math. Phys.,59, 273.Google Scholar
  9. 9.
    Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • A. K. Banerjee
    • 1
  • N. O. Santos
    • 2
  1. 1.Department of PhysicsJadavpur UniversityCalcuttaIndia
  2. 2.Instituto de FísicaUniversidade Federal do Rio de JaneiroIlha do Fundão, Rio de JaneiroBrazil

Personalised recommendations