Skip to main content
Log in

Genetic and cell biological aspects of the yeast vacuolar H+-ATPase

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The yeast vacuolar proton-translocating ATPase is a member of the third class of H+-pumping ATPase. A family of this type of H+-ATPase is now known to be ubiquitously distributed in eukaryotic vacuo-lysosomal organelles and archaebacteria. NineVMA genes that are indispensable for expression of the enzyme activity have been cloned and characterized in the yeastSaccharomyces cerevisiae. This review summarizes currently available information on theVMA genes and cell biological functions of theVMA gene products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, I., Puopolo, K., Marquez-Sterling, N., Arai, H., and Forgac, M. (1990).J. Biol. Chem. 265, 976–973.

    Google Scholar 

  • Al-Awqati, Q. (1986).Annu. Rev. Cell. Biol. 2, 179–199.

    Google Scholar 

  • Anraku, Y. (1987a). InBioenergetics: Structure and Function of Energy Transducing Systems (Ozawa, T., and Papa, S., eds.). Japan Scientific Societies Press and Academic Press, Tokyo and New York, pp. 249–262.

    Google Scholar 

  • Anraku, Y. (1987b). InPlant Vacuoles (Marin, B., ed.), Plenum Press, New York and London, pp. 255–265.

    Google Scholar 

  • Anraku, Y., Umemoto, N., Hirata, R., and Wada, Y. (1989).J. Bioenerg. Biomembr. 21, 589–603.

    Google Scholar 

  • Anraku, Y., Hirata, R., Umemoto, N., and Ohya, Y. (1991a). InNew Era of Bioenergetics (Mukohata, Y. ed.), Academic Press, Tokyo, pp. 133–168.

    Google Scholar 

  • Anraku, Y., Ohya, Y., and Iida, H. (1991b).Biochim. Biophys. Acta 1093, 169–177.

    Google Scholar 

  • Arai, H., Terres, G., Pink, S., and Forgac, M. (1988).J. Biol. Chem. 263, 8796–8802.

    Google Scholar 

  • Banta, L. M., Vida, T. A., Herman, P. K., and Emr, S. D. (1990).Mol. Cell. Biol. 10, 4683–4699.

    Google Scholar 

  • Beltrán, C., Kopecky, J., Pan, Y.-C., Nelson, H., and Nelson, N. (1992).J. Biol. Chem. 267, 774–779.

    Google Scholar 

  • Bowman, B. J., and Bowman, E. J. (1986).J. Membr. Biol. 94, 83–97.

    Google Scholar 

  • Bowman, B. J., Berenski, C. J., and Jung, C. Y. (1985).J. Biol. Chem. 260, 8726–8730.

    Google Scholar 

  • Bowman, B. J., Allen, R., Wechser, M. A., and Bowman, E. J. (1988).J. Biol. Chem. 263, 14002–14007.

    Google Scholar 

  • Bowman, B. J., Dschida, W. J., Harris, T., and Bowman, E. J. (1989).J. Biol. Chem. 264, 15606–15612.

    Google Scholar 

  • Bowman, E. J., Mandala, S., Taiz, L., and Bowman, B. J. (1986).Proc. Natl. Acad. Sci. USA 83, 48–52.

    Google Scholar 

  • Bowman, E. J., Siebers, A., and Altendorf, K. (1988a).Proc. Natl. Acad. Sci. USA 85, 7972–7976.

    Google Scholar 

  • Bowman, E. J., Tenney, K., and Bowman, B. J. (1988b).J. Biol. Chem. 263, 13994–14001.

    Google Scholar 

  • Brusilow, W. S. A., Scarpetta, M. A., Hawthrone, C. A., and Clark, W. P. (1989).J. Biol. Chem. 264, 1528–1533.

    Google Scholar 

  • Cozens, A. L., and Walker, J. E. (1987).J. Mol. Biol. 194, 359–383.

    Google Scholar 

  • Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1988).J. Biol. Chem. 263, 17251–17254.

    Google Scholar 

  • Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1989).J. Biol. Chem. 264, 7119–7121.

    Google Scholar 

  • Denda, K., Konishi, J., Haziro, K., Oshima, T., Date, Y. and Yoshida, M. (1990).J. Biol. Chem. 265, 21509–21513.

    Google Scholar 

  • Duncan, T. M., and Senior, A. E. (1985).J. Biol. Chem. 260, 4901–4907.

    Google Scholar 

  • Forgac, M. (1989).Physiol. Rev. 69, 765–796.

    Google Scholar 

  • Foury, F. (1989).J. Biol. Chem. 264, 20552–20560.

    Google Scholar 

  • Foury, F. (1990).J. Biol. Chem. 265, 188554–18560.

    Google Scholar 

  • Futai, M., Noumi, T., and Maeda, M. (1988).J. Bioenerg. Biomembr. 20, 41–58.

    Google Scholar 

  • Futai, M., Noumi, T., and Maeda, M. (1989).Annu. Rev. Biochem. 58, 111–136.

    Google Scholar 

  • Galons, J.-P., Tanida, I., Ohya, Y., Anraku, Y., and Arata, Y. (1990).Eur. J. Biochem. 193, 111–119.

    Google Scholar 

  • Grubmeyer, C., Cross, R. L., and Penefsky, H. S. (1982).J. Biol. Chem. 257, 12092–12100.

    Google Scholar 

  • Hahn, S., Hoar, E. T., and Guarente, L. (1985).Proc. Natl. Acad. Sci. USA 82, 8562–8566.

    Google Scholar 

  • Hirata, R., Ohsumi, Y., and Anraku, Y. (1989).FEBS Lett. 244, 397–401.

    Google Scholar 

  • Hirata, R., Ohsumi, Y., Nakano, A., Kawasaki, H., Suzuki, K., and Anraku, Y. (1990).J. Biol. Chem. 265, 6726–6733.

    Google Scholar 

  • Hirsch, S., Strauss, A., Masood, K., Lee, S., Sukhatme, V., and Gluck, S. (1988).Proc. Natl. Acad. Sci. USA 85, 3004–3008.

    Google Scholar 

  • Iida, H., Sakaguchi, S., Yagawa, Y., and Anraku, Y. (1990a).J. Biol. Chem. 265, 21216–21222.

    Google Scholar 

  • Iida, H., Yagawa, Y., and Anraku, Y. (1990b).J. Biol. Chem. 265, 13391–13399.

    Google Scholar 

  • Inatomi, K., Eya, S., Maeda, M., and Futai, M. (1989).J. Biol. Chem. 264, 10954–10959.

    Google Scholar 

  • Kaestner, K. H., Randall, S. K., and Sze, H. (1988).J. Biol. Chem. 263, 1282–1287.

    Google Scholar 

  • Kakinuma, Y., Ohsumi, Y., and Anraku, Y. (1981).J. Biol. Chem. 256, 10859–10863.

    Google Scholar 

  • Kane, P. M., Yamashiro, C. T., and Stevens, T. H. (1989).J. Biol. Chem. 264, 19236–19244.

    Google Scholar 

  • Kane, P. M., Yamashiro, C. T., Wolczyk, D. F., Neff, N., Goebl, M., and Stevens, T. H. (1990).Science 250, 651–657.

    Google Scholar 

  • Kane, P. M., Kuehn, M. C., Howald, I., and Stevens, T. H. (1991).J. Biol. Chem. 266, 447–454.

    Google Scholar 

  • Kitamoto, K., Yoshizawa, K., Ohsumi, Y., and Anraku, Y. (1988a).J. Bacteriol. 170, 2683–2686.

    Google Scholar 

  • Kitamoto, K., Yoshizawa, K., Ohsumi, Y., and Anraku, Y. (1988b).J. Bacteriol. 170, 2687–2691.

    Google Scholar 

  • Klionsky, D. J., Herman, P. K., and Emr, S. D. (1990).Microbiol. Rev. 54, 266–292.

    Google Scholar 

  • Kyte, J., and Doolittle, R. F. (1982).J. Mol. Biol. 157, 105–132.

    Google Scholar 

  • Lai, S., Randall, S. K., and Sze, H. (1988).J. Biol. Chem. 263, 16731–16737.

    Google Scholar 

  • Langford, C. J., and Gallwitz, D. (1983).Cell 33, 519–527.

    Google Scholar 

  • Lazowska, J., Claisse, M., Gargouri, A., Kotylak, Z., Spyridakis, A., and Slonimski, P. P. (1989).J. Mol. Biol. 205, 275–289.

    Google Scholar 

  • Leer, R. J., Van Raamsdonk-Duni, M. C., Mager, W. H., and Planta, R. J. (1985).Curr. Gent. 9. 273–277.

    Google Scholar 

  • Mandala, S., and Taiz, L. (1985).Plant Physiol. 78, 327–333.

    Google Scholar 

  • Mandel, M., Moriyama, Y., Hulmes, J. D., Pan, Y.-C. E, Nelson, H., and Nelson, N. (1988).Proc. Natl. Acad. Sci. USA 85, 5521–5524.

    Google Scholar 

  • Manolson, M. F., Rea, P. A., and Poole, R. J. (1985).J. Biol. Chem. 260, 12273–12279.

    Google Scholar 

  • Manolson, M. F., Percy, J. M., Apps, D. K., Xie, X.-S., Stone, D. K., and Poole, R. J. (1987). InProceedings of the Membrane Protein Symposium (Goheen, S. C., ed.), Bio-Rad, Richmond, California, pp. 427–434.

    Google Scholar 

  • Manolson, M. F., Ouellette, B. F. F., Filion, M., and Poole, R. J. (1988).J. Biol. Chem. 263, 17987–17994.

    Google Scholar 

  • Marin, B. P., Preisser, J., and Komor, E. (1985).Eur. J. Biochem. 151, 131–140.

    Google Scholar 

  • Maruyama, T., Gojobori, T., Aota, S., and Ikemura, T. (1986).Nucleic Acids Res. 14 (supplement), 151–197.

    Google Scholar 

  • Mellman, I., Fuchs, R., and Helenius, A. (1986).Annu. Rev. Biochem. 55, 663–700.

    Google Scholar 

  • Moriyama, Y., and Futai, M. (1990).Biochem. Biophys. Res. Commun. 173, 443–448.

    Google Scholar 

  • Moriyama, Y., and Nelson, N. (1987a).J. Biol. Chem. 262, 9175–9180.

    Google Scholar 

  • Moriyama, Y., and Nelson, N. (1987b).J. Biol. Chem. 262, 14723–14729.

    Google Scholar 

  • Moriyama, Y., and Nelson, N. (1989a).Biochim. Biophys. Acta 980, 241–247.

    Google Scholar 

  • Moriyama, Y., and Nelson, N. (1989b).J. Biol. Chem. 264, 3577–3582.

    Google Scholar 

  • Moriyama, Y., and Nelson, N. (1989c).J. Biol. Chem. 264, 18445–18450.

    Google Scholar 

  • Nelson, H., and Nelson, N. (1989).FEBS Lett. 247, 147–153.

    Google Scholar 

  • Nelson, H., Mandiyan, S., and Nelson, N. (1989a).J. Biol. Chem. 264, 1775–1778.

    Google Scholar 

  • Nelson, H., Mandiyan, S., and Nelson, N. (1989b).J. Biol. Chem. 264, 5313.

    Google Scholar 

  • Nelson, H., Mandiyan, S., Noumi, T., Moriyama, Y., Miedel, M. C., and Nelson, N. (1990).J. Biol. Chem. 265, 20390–20393.

    Google Scholar 

  • Nelson, N. (1988).Plant Physiol. 86, 1–3.

    Google Scholar 

  • Nelson, N., and Taiz, L. (1989).Trends Biochem. Sci. 14, 113–116.

    Google Scholar 

  • Noumi, T., Taniai, M., Kanazawa, H., and Futai, M. (1986).J. Biol. Chem. 261, 9126–9201.

    Google Scholar 

  • Noumi, T., Beltran, C., Nelson, H., and Nelson, N. (1991).Proc. Natl. Acad. Sci. USA 88, 1938–1942.

    Google Scholar 

  • Ohkuma, S. (1987). InLysosomes: Their Role in Protein Breakdown (Glaumann, H., and Ballard, F. J., eds), Academic Press, New York, pp. 115–148.

    Google Scholar 

  • Ohsumi, Y., and Anraku, Y. (1981).J. Biol. Chem. 256, 2079–2082.

    Google Scholar 

  • Ohsumi, Y., and Anraku, Y. (1983).J. Biol. Chem. 258, 5614–5617.

    Google Scholar 

  • Ohsumi, Y., Kitamoto, K., and Anraku, Y. (1988).J. Bacteriol 170, 2676–2682.

    Google Scholar 

  • Ohya, Y., Ohsumi, Y., and Anraku, Y. (1986).J. Gen. Microbiol 132, 979–988.

    Google Scholar 

  • Ohya, Y., Umemoto, N., Tanida, I., Ohta, A., Iida, H., and Anraku, Y. (1991).J. Biol. Chem. 266, 13971–13977.

    Google Scholar 

  • Parry, R. V., Turner, J. C., and Rea, P. A. (1989).J. Biol. Chem. 264, 20025–20032.

    Google Scholar 

  • Randall, S. K., and Sze, H. (1987).J. Biol. Chem. 262, 7135–7141.

    Google Scholar 

  • Rudnick, G. (1986).Annu. Rev. Physiol. 48, 403–413.

    Google Scholar 

  • Rea, P. A., Griffith, C. J., and Sanders, D. (1988).J. Biol. Chem. 263, 14745–14752.

    Google Scholar 

  • Sato, T., Ohsumi, Y., and Anraku, Y. (1984a).J. Biol. Chem. 259, 11505–11508.

    Google Scholar 

  • Sato, T., Ohsumi, Y., and Anraku, Y. (1984b).J. Biol. Chem. 259, 11509–11511.

    Google Scholar 

  • Sebald, W., and Hoppe, J. (1981).Curr. Top. Bioenerg. 12, 1–64.

    Google Scholar 

  • Shih, C.-K., Wagner, R., Feinstein, S., Kanik-Ennulat, C., and Neff, N., (1988).Mol. Cell. Biol. 8, 3094–3103.

    Google Scholar 

  • Shih, C.-K., Kwong, J., Montalvo, E., and Neff, N. (1990).Mol. Cell. Biol. 10, 3397–3404.

    Google Scholar 

  • Stone, D. K., Crider, B. P., Südhof, T. C., and Xie, X.-S. (1989).J. Bioenerg. Biomembr. 21. 605–620.

    Google Scholar 

  • Südhof, T. C., Fried, V. A., Stone, D. K., Johnstone, P. A., and Xie, X.-S. (1989).Proc. Natl. Acad. Sci. USA 86, 6067–6071.

    Google Scholar 

  • Sze, H. (1985).Annu. Rev. Plant Physiol. 36, 175–208.

    Google Scholar 

  • Tanifuji, M., Sato, M., Wada, Y., Anraku, Y., and Kasai, M. (1988).J. Membr. Biol. 106, 47–55.

    Google Scholar 

  • Teem, J. L., Abovich, N., Kaufer, N. F., Schwindinger, W. F., Warner, J. R., Levy, A., Woolford, J., Leer, R. J., Van Raamsdonk-Duin, M. C., Mager, W. H., Planta, R. J., Schultz, L., Friesen, J. D., Fried, H., and Rosbash, M. (1984).Nucleic Acids Res. 12, 8295–8312.

    Google Scholar 

  • Tzagoloff, A., and Dieckmann, C. L. (1990).Microbiol. Rev. 54, 211–225.

    Google Scholar 

  • Uchida, E., Ohsumi, Y., and Anraku, Y. (1985).J. Biol. Chem. 260, 1090–1095.

    Google Scholar 

  • Uchida, E., Ohsumi, Y., and Anraku, Y. (1988).J. Biol. Chem. 263, 45–51.

    Google Scholar 

  • Umemoto, N., Yoshihisa, T., Hirata, R., and Anraku, Y. (1990).J. Biol. Chem. 265, 18447–18453.

    Google Scholar 

  • Umemoto, N., Ohya, Y., and Anraku, Y. (1991).J. Biol. Chem. 266, 24526–24532.

    Google Scholar 

  • Vignais, M. L., Woudt, L. P., Wassenaar, G. M., Mager, W. H., Sentenac, A., and Planta, R. J. (1987).EMBO J. 6, 1451–1457.

    Google Scholar 

  • Wada, Y., Ohsumi, Y., Tanifuji, M., Kasai, M., and Anraku, Y. (1987).J. Biol. Chem. 262, 17260–17263.

    Google Scholar 

  • Wada, Y., Kitamoto, K., Kanbe, T., Tanaka, K., and Anraku, Y. (1990).Mol. Cell. Biol. 10, 2214–2223.

    Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982).EMBO J. 1, 945–951.

    Google Scholar 

  • Xie, X.-S., and Stone, D. K. (1986).J. Biol. Chem. 261, 2492–2495.

    Google Scholar 

  • Yamashiro, C. T., Kane, P. M., Wolczyk, D. F., Preston, R. A., and Stevens, T. H. (1990).Mol. Cell. Biol. 10, 3737–3749.

    Google Scholar 

  • Yoshihisa, T., and Anraku, Y. (1989).Biochem. Biophys. Res. Commun. 163, 908–915.

    Google Scholar 

  • Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., and Tashiro, Y. (1991).J. Biol. Chem. 266, 17707–17712.

    Google Scholar 

  • Zaret, K. S., and Sherman, F. (1982).Cell. 28, 563–573.

    Google Scholar 

  • Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H., and Taiz, L. (1988).J. Biol. Chem. 263, 9102–9112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anraku, Y., Umemoto, N., Hirata, R. et al. Genetic and cell biological aspects of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 24, 395–405 (1992). https://doi.org/10.1007/BF00762532

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762532

Key words

Navigation