Skip to main content
Log in

Structure and properties of the coated vesicle (H+)-ATPase

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Clathrin-coated vesicles play an important role in both receptor-mediated endocytosis and intracellular membrane traffic in eukaryotic cells. The coated vesicle (H+)-ATPase functions to provide the acidic environment within endosomes and other intracellular compartments necessary for receptor recycling and intracellular membrane traffic. The coated vesicle (H+)-ATPase is composed of nine different subunits which are divided into two distinct domains. The peripheral V1 domain, which has the structure 733:583:401:341:331, possesses the nucleotide binding sites of the (H+)-ATPase. The integral V0 domain, which has the composition 1001:381:191:176, contains the pathway for proton conduction across the membrane. Topographical analysis indicates a structure for the coated vesicle (H+)-ATPase very similar to that of the F-type ATPases. Reassembly studies have allowed us to probe the function of particular subunits in this complex and the activity properties of the separate domains. These studies have led to insights into possible mechanisms of regulating vacuolar acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. G., and Orci, L. (1988).J. Cell. Biol. 106, 539–543.

    Google Scholar 

  • Adachi, I., Arai, H., Pimental, R., and Forgac, M. (1990a).J. Biol. Chem. 265, 960–966.

    Google Scholar 

  • Adachi, I., Puopolo, K., Marquez-Sterling, N., Arai, H., and Forgac, M. (1990b).J. Biol. Chem. 265, 967–973.

    Google Scholar 

  • Arai, H., Berne, M., and Forgac, M. (1987a).J. Biol. Chem. 262, 11006–11011.

    Google Scholar 

  • Arai, H., Berne, M., Terres, G., Terres, H., Puopolo, K., and Forgac, M. (1987b).Biochemistry 26, 6632–6638.

    Google Scholar 

  • Arai, H., Terres, G., Pink, S., and Forgac, M. (1988).J. Biol. Chem. 263, 8796–8802.

    Google Scholar 

  • Arai, H., Pink, S., and Forgac, M. (1989).Biochemistry 28, 3075–3082.

    Google Scholar 

  • Aris, J. P., Klionsky, D. J., and Simoni, R. D. (1985).J. Biol. Chem. 260, 11207–11215.

    Google Scholar 

  • Ashwell, G., and Harford, J. (1982).Annu. Rev. Biochem. 51, 531–554.

    Google Scholar 

  • Bernasconi, P., Rausch, T., Struve, I., Morgan, L., and Taiz, L. (1990).J. Biol. Chem. 265, 17428–17431.

    Google Scholar 

  • Bowman, B. J., Allen, R., Wechser, M. A., and Bowman, E. J. (1988).J. Biol. Chem. 263, 14002–14007.

    Google Scholar 

  • Bowman, B. J., Dschida, W. J., and Harris, T., and Bowman, E. J. (1989).J. Biol. Chem. 264, 15606–15612.

    Google Scholar 

  • Bowman, E. J., Siebers, A., and Altendorf, K. (1988a).Proc. Natl. Acad. Sci. USA 85, 7972–7976.

    Google Scholar 

  • Bowman, E. J., Tenney, K., and Bowman, B. (1988b).J. Biol. Chem. 263, 13994–14001.

    Google Scholar 

  • Brown, M. S., and Goldstein, J. L. (1986).Science 232, 34–47.

    Google Scholar 

  • Cain, B. D., and Simoni, R. D. (1986).J. Biol. Chem. 261, 10043–10050.

    Google Scholar 

  • Chiechanover, A., Schwartz, A. L., Dautry-Varsat, A., and Lodish, H. F. (1983).J. Biol. Chem. 258, 9681–9689.

    Google Scholar 

  • Cidon, S., and Sihra, T. S. (1989).J. Biol. Chem. 264, 8281–8288.

    Google Scholar 

  • Creek, K. E., and Sly, W. S. (1984). InLysosomes in Biology and Pathology (Dingle, J., Dean R., and Sly, W., eds.), Elsevier, New York, pp. 63–82.

    Google Scholar 

  • Cross, R. L., and Taiz, L. (1990).FEBS Lett. 259, 227–229.

    Google Scholar 

  • Feng, Y., and Forgac, M. (1992).J. Biol. Chem. 267, 5817–5822.

    Google Scholar 

  • Forgac, M. (1989).Physiol. Rev. 69, 765–796.

    Google Scholar 

  • Forgac, M., and Cantley, L. (1984).J. Biol. Chem. 259, 8101–8105.

    Google Scholar 

  • Forgac, M., Cantley, L., Wiedenmann, B., Altstiel, L., and Branton, D. (1983).Proc. Natl. Acad. Sci. USA 80, 1300–1303.

    Google Scholar 

  • Foster, D. L., and Fillingame, R. H. (1982).J. Biol. Chem. 257, 2009–2015.

    Google Scholar 

  • Fuchs, R., Ellinger, A., Paveleka, M., Peterlik, M., and Mellman, I. (1987).J. Cell. Biol. 105, 91a.

    Google Scholar 

  • Galloway, C. J., Dean, G. E., Marsh, M., Rudnick, G., and Mellman, I. (1983).Proc. Natl. Acad. Sci. USA 80, 3334–3338.

    Google Scholar 

  • Gueze, H. J., Slot, J. W., Strous, G. J., Lodish, H. F., and Schwartz, A. L. (1983).Cell 32, 277–287.

    Google Scholar 

  • Gluck, S., and Caldwell, J. (1987).J. Biol. Chem. 262, 15780–15789.

    Google Scholar 

  • Gluck, S., Cannon, C., and Al-Awqati, Q. (1982).Proc. Natl. Acad. Sci. USA 79, 4327–4331.

    Google Scholar 

  • Kane, P. M., Kuehn, M. C., Howald-Stevenson, I., and Stevens, T. H. (1992).J. Biol. Chem. 267, 447–454.

    Google Scholar 

  • Kane, P. M., Yamashiro, C. T., and Stevens, T. H. (1989).J. Biol. Chem. 264, 19236–19244.

    Google Scholar 

  • Lai, S., Randall, S. K., and Sze, H. (1988).J. Biol. Chem. 263, 16731–16737.

    Google Scholar 

  • Mandel, M., Moriyama, Y., Hulmes, J. D., Pan, Y. C., Nelson, H., and Nelson, N. (1988).Proc. Natl. Acad. Sci. USA 85, 5521–5524.

    Google Scholar 

  • Marquez-Sterling, N., Herman, I. M., Pesecreta, T., Arai, H., Terres, G., and Forgac, M. (1991).Eur. J. Cell. Biol. 56, 19–33.

    Google Scholar 

  • Moriyama, Y., and Nelson, N. (1989).J. Biol. Chem. 264, 3577–3582.

    Google Scholar 

  • Mostov, K., Friedlander, M., and Blobel, G. (1984).Nature (London)308, 37–43.

    Google Scholar 

  • Mulberg, A. E., Tulk, B. M., and Forgac, M. (1991).J. Biol. Chem. 266, 20590–20593.

    Google Scholar 

  • Parry, P. V., Turner, J. C., and Rea, P. (1989).J. Biol. Chem. 264, 20025–20032.

    Google Scholar 

  • Pastan, I. H., and Willingham, M. C. (1981).Annu. Rev. Physiol. 43, 239–250.

    Google Scholar 

  • Pearse, B. M. (1976).Proc. Natl. Acad. Sci. 73, 1255–1259.

    Google Scholar 

  • Pederson, P. L., and Carafoli, E. (1987a).Trends Biochem. Sci. 12, 146–150.

    Google Scholar 

  • Pederson, P. L., and Carafoli, E. (1987b).Trends Biochem. Sci. 12, 186–189.

    Google Scholar 

  • Penefsky, H. S., and Cross, R. L. (1991).Adv. Enzymol. 64, 173–214.

    Google Scholar 

  • Perin, M. S., Fried, V. A., Stone, D. K., Xie, X. S., and Sudhof, T. C. (1991).J. Biol. Chem. 266, 3877–3881.

    Google Scholar 

  • Pfeffer, S. R., and Kelley, R. B. (1985).Cell 40, 949–957.

    Google Scholar 

  • Puopolo, K., and Forgac, M. (1990).J. Biol. Chem. 265, 14836–14841.

    Google Scholar 

  • Puopolo, K., Kumamoto, C., Adachi, I., and Forgac, M. (1991).J. Biol. Chem. 266, 24564–24572.

    Google Scholar 

  • Puopolo, K., Kumamoto, C., Adachi, I., Magner, R., and Forgac, M. (1992a).J. Biol. Chem. 267, 3696–3706.

    Google Scholar 

  • Puopolo, K., Sczekan, M., Magher, R., and Forgac, M. (1992b).J. Biol. Chem. 267, 5171–5176.

    Google Scholar 

  • Schneider, E., and Altendorf, K. (1985).EMBO J. 4, 515–518.

    Google Scholar 

  • Senior, A. E. (1988).Physiol. Rev. 68, 177–231.

    Google Scholar 

  • Stone, D. K., Xie, X. S., and Racker, E. (1983).J. Biol. Chem. 258, 4059–4062.

    Google Scholar 

  • Stone, D. K., Xie, X. S., and Racker, E. (1984).J. Biol. Chem. 259, 2701–2703.

    Google Scholar 

  • Sudhof, T. C., Fried, V. A., Stine, D. K., Johnston, P. A., and Xie, X. S. (1989).Proc. Natl. Acad. Sci. USA 86, 6067–6071.

    Google Scholar 

  • Sun, S. Z., Xie, X. S., and Stone, D. K. (1987).J. Biol. Chem. 262, 14790–14794.

    Google Scholar 

  • van Dyke, R. W., Steer, C. J., and Scharschmidt, B. F. (1984).Proc. Natl. Acad. Sci. USA 81, 3108–3112.

    Google Scholar 

  • Walker, J. E., Fearnley, I. M., Gay, N. J., Gibson, B. W., Northrop, F. D., Powell, S. J., Runswick, M. J., Saraste, M., and Tybulewicz, V. L. (1985).J. Mol. Biol. 184, 677–701.

    Google Scholar 

  • Wang, S. Y., Moriyama, Y., Mandel, M., Hulmes, J. D., Pan, Y. C., Danho, W., Nelson, H., and Nelson, N. (1988).J. Biol. Chem. 263, 17638–17642.

    Google Scholar 

  • Xie, X. S., and Stone, D. K. (1986).J. Biol. Chem. 261, 2492–2495.

    Google Scholar 

  • Xie, X. S., Stone, D. K., and Racker, E. (1983).J. Biol. Chem. 258, 14834–14838.

    Google Scholar 

  • Xie, X. S., Crider, B. P., and Stone, D. K. (1989).J. Biol. Chem. 264, 18870–18873.

    Google Scholar 

  • Yamashiro, D. J., Fluss, S. R., and Maxfield, F. R. (1983).J. Cell Biol. 97, 929–934.

    Google Scholar 

  • Ysern, X., Amzel, L. M., and Pedersen, P. L. (1988).J. Bioenerg. Biomembr. 20, 423–450.

    Google Scholar 

  • Zhang, J., Myers, M., and Forgac, M. (1992).J. Biol. Chem. 267, 9773–9778.

    Google Scholar 

  • Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H., and Taiz, L. (1988).J. Biol. Chem. 263, 9102–9112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forgac, M. Structure and properties of the coated vesicle (H+)-ATPase. J Bioenerg Biomembr 24, 341–350 (1992). https://doi.org/10.1007/BF00762527

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762527

Key words

Navigation