Journal of Bioenergetics and Biomembranes

, Volume 21, Issue 4, pp 507–518 | Cite as

Studies on the interaction between mitochondria and the cytoskeleton

  • Monica Lindén
  • B. Dean Nelson
  • Dragutin Loncar
  • Jean Francois Leterrier
Research Articles


Mitochondrial movements and morphology are regulated through interactions with the cytoskeletal system, in particular the microtubules. An interaction between the microtubule-associated proteins (MAPs) and the outer surface of rat brain mitochondria has been demonstratedin vitro andin situ. One of the MAPs, MAP2, binds to specific high-affinity sites on the outer membrane. Upon binding, MAP2 is released from microtubules, and it induces a physical alteration in the outer membrane which is characterized by a tighter association of porin with the membrane. It is concluded that MAP2 either binds to porin or to a domain of the outer membrane which alters the membrane environment of porin. The possibility is raised that this domain participates in mitochondrial mobilityin situ.

Key Words

Mitochondria microtubules microtubule-associated proteins (MAPs) cytoskeleton porin Voltage-dependent anion-selective channels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. D., Weiss, D. G., Hayden, J. M., Brown, D. T., Fujiwake, H., and Simpson, M. (1985)J. Cell Biol. 100, 1736–1752.Google Scholar
  2. Ball, E. H., and Singer, S. J. (1982)Proc. Natl. Acad. Sci. 79, 123–126.Google Scholar
  3. Bridgman, P. C., Kachar, B., and Reese, T. S. (1986)J. Cell Biol. 102, 1510–1521.Google Scholar
  4. Chen, L. B. (1988)Annu. Rev. Cell Biol. 4, 155–181.Google Scholar
  5. Chen, L. B. (1989) InMethods in Cell Biology (Wang, Y.-L., and Taylor, D. L., eds.), Vol. 29, Academic Press, New York, pp. 103–123.Google Scholar
  6. Griffin, J. W., Fahnestock, K. E., Price, D. L., and Hoffmann, P. N. (1983)J. Neurosci. 3, 557–566.Google Scholar
  7. Heggeness, H. M., Simmon, M., and Singer, S. J. (1978)Proc. Natl. Acad. Sci. 75, 3863–3866.Google Scholar
  8. Heimann, R., Shelanski, M. L., and Liem, R. K. H. (1985)J. Biol. Chem. 260, 12160–12166.Google Scholar
  9. Hirokawa, N. (1982).J. Cell Biol. 94, 129–142.Google Scholar
  10. Hirokawa, N., Bloom, G. S., and Vallee, R. B. (1985)J. Cell Biol. 101, 227–239.Google Scholar
  11. Leterrier, J. F., and Eyer, J. (1987)Biochem. J. 245, 93–101.Google Scholar
  12. Leterrier, J. F., Liem, R. K., and Shelanski, M. L. (1982)J. Cell Biol. 95, 982–986.Google Scholar
  13. Lindén, M., Gellerfors, P., and Nelson, B. D. (1982)Biochem. J. 208, 77–82.Google Scholar
  14. Lindén, M., Nelson, B. D., and Leterrier, J. F. (1989)Biochem. J. 261, 167–173.Google Scholar
  15. Martz, D., Lasek, R. J., Brady, S. T., and Allen, R. D. (1984)Cell Motil. 4, 89–101.Google Scholar
  16. Miller, R. H., and Lasek, R. J. (1985)J. Cell Biol. 101, 2181–2193.Google Scholar
  17. Miyata, Y., Hoshi, M., Nishida, E., Minami, Y., and Sakai, H. (1986)J. Biol. Chem. 261, 13026–13030.Google Scholar
  18. Paschal, B. M., Shpetner, H. S., and Vallee, R. B. (1987)J. Cell Biol. 105, 1273–1282.Google Scholar
  19. Rendon, A., Filliol, D., and Jancsik, V. (1987)Biochem. Biophys. Res. Commun. 149, 776–783.Google Scholar
  20. Sally, A., Wang, L. D., and Cowan, N. J. (1988)Science 242, 936–939.Google Scholar
  21. Schnapp, B. J., and Reese, T. S. (1989)Proc. Natl. Acad. Sci. 86, 1548–1552.Google Scholar
  22. Scholey, J. M., Heuser, J. H., Yang, J. T., and Goldstein, L. S. B. (1989)Nature (London)338, 355–357.Google Scholar
  23. Shiomura, Y., and Hirokawa, N. (1987)J. Cell Biol. 104, 1575–1578.Google Scholar
  24. Slot, J. W., and Geuze, H. J. (1984) InImmunolabeling for Electron Microscopy (Polak, J. M., and Varndell, I. M., eds.), Elsevier, Amsterdam, pp. 129–142.Google Scholar
  25. Smith, D. S., Järlfors, U., and Cameron, B. F. (1975)Ann. N.Y. Acad. Sci. 253, 472–506.Google Scholar
  26. Summerhayes, I. C., Wong, D., and Chen, L. B. (1983)J. Cell Sci. 61, 87–105.Google Scholar
  27. Tokuyashu, K. T. (1984) InImmunolabeling for Electron Microscopy (Polak, J. M., and Varndell, I. M., eds.), Elsevier, Amsterdam, pp. 71–82.Google Scholar
  28. Vale, R. D., Schnapp, B. J., and Sheetz, M. P. (1985a)Cell 40, 449–454.Google Scholar
  29. Vale, R. D., Reese, T. S., and Sheetz, M. P. (1985b)Cell 42, 39–50.Google Scholar
  30. Vale, R. D., Scholey, J. M., and Sheetz, M. P. (1986)Trends Biochem. Sci. 11, 464–468.Google Scholar
  31. Vallee, R. B., Shpetner, H. S., and Paschal, B. M. (1989)Trends Neurosci. 12, 66–70.Google Scholar
  32. Voter, W. A., and Erikson, H. P. (1982)J. Ultrastruct. Res. 80, 374–382.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Monica Lindén
    • 1
  • B. Dean Nelson
    • 1
  • Dragutin Loncar
    • 2
  • Jean Francois Leterrier
    • 3
  1. 1.Department of BiochemistryUniversity of StockholmStockholmSweden
  2. 2.The Wenner Gren InstituteUniversity of StockholmStockholmSweden
  3. 3.NSERM U 298, Centre Hospitalier Régional UniversitaireAngers CedexFrance

Personalised recommendations