Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 24, Issue 6, pp 635–640 | Cite as

Characterization of the inhibitor sensitivity of the coenzyme a transport system in isolated rat heart mitochondria

  • Arun G. Tahiliani
  • Timothy Keene
  • Ronald S. Kaplan
Original Articles

Abstract

The effect of protein labeling agents on coenzyme A (CoA) transport into isolated rat heart mitochondria was studied. CoA transport was substantially inhibited by sulfhydryl reagents (mersalyl, pCMB) as well as by the tyrosine-selective reagent N-acetylimidazole. The effect of pCMB was reversed by DTT. Moreover, CoA uptake was completely abolished by agents selective for lysine and amino terminal residues (pyridoxal 5-phosphate, dansyl chloride). In contrast arginine-selective reagents (2, 3-butanedione, phenylglyoxal) caused considerably less inhibiton of CoA uptake. Moreover, partial inhibition of transport was observed with the stilbene disulfonic acid derivatives DIDS and SITS. Finally, measurement of the effects of the labeling agents on the mitochondrial membrane potential indicated that the inhibition of CoA transport into mitochondria is not a secondary effect that arises from an alteration in the electric potential gradient across the inner mitochondrial membrane. These results provide the first information on the types of amino acid residues that may be essential to the CoA transport mechanism and provide additional support for the existence of a CoA transport protein within the mitochondrial inner membrane. Furthermore, the identification of effective inhibitors of the CoA transport system will greatly facilitate the functional reconstitution of this transporter in a proteoliposomal system following its solubilization and purification.

Key words

Coenzyme A mitochondria transport rat heart protein labeling agents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aquila, H., Misra, D., Eulitz, M., and Klingenberg, M. (1982).Hoppe-Seyler's Z. Physiol. Chem. 363, 345–349.Google Scholar
  2. Aquila, H., Link, T. A., and Klingenberg, M. (1985).EMBO J. 4, 2369–2376.Google Scholar
  3. Aquila, H., Link, T. A., and Klingenberg, M. (1987).FEBS Lett. 212, 1–9.CrossRefGoogle Scholar
  4. Bradford, M. M. (1976).Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  5. Bryla, J. (1980).Pharmacol. Ther. 10, 351–397.CrossRefGoogle Scholar
  6. Cabantchik, Z. I., and Rothstein, A. (1972).J. Membr. Biol. 10, 311–330.CrossRefGoogle Scholar
  7. Cabantchik, Z. I., and Rothstein, A. (1974).J. Membr. Biol. 15, 207–226.CrossRefGoogle Scholar
  8. Cabantchik, Z. I., Knauf, P. A., and Rothstein, A. (1978).Biochim. Biophys. Acta 515, 239–302.Google Scholar
  9. Chance, B., and Hagihara, B. (1960).Biochem. Biophys. Res. Commun. 3, 1–5.CrossRefGoogle Scholar
  10. Claeys, D., and Azzi, A. (1989).J. Biol. Chem. 264, 14627–14630.Google Scholar
  11. Ferreira, G. C., Pratt, R. D., and Pedersen, P. L. (1989).J. Biol. Chem. 264, 15628–15633.Google Scholar
  12. Garland, P. B., Sheperd, D., and Yates, D. W. (1965).Biochem. J. 97, 587–594.Google Scholar
  13. Hutson, S. M., Roten, S., and Kaplan, R. S. (1990).Proc. Natl. Acad. Sci. USA 87, 1028–1031.CrossRefGoogle Scholar
  14. Idell-Wenger, J. A., Grotyohann, L. W., and Neely, J. R. (1982).Anal. Biochem. 125, 269–276.CrossRefGoogle Scholar
  15. Kaplan, R. S., Pratt, R. D., and Pedersen, P. L. (1986).J. Biol. Chem. 261, 12767–12773.Google Scholar
  16. Kaplan, R. S., Mayor, J. A., Johnston, N., and Oliveira, D. L. (1990).J. Biol. Chem. 265, 13379–13385.Google Scholar
  17. Kramer, R. (1984).FEBS Lett. 176, 351–354.CrossRefGoogle Scholar
  18. LaNoue, K. F., and Schoolwerth, A. C. (1979).Annu. Rev. Biochem. 48, 871–922.CrossRefGoogle Scholar
  19. Lundblad, R. L., and Noyes, C. M. (1984). InChemical Reagents for Protein Modification, Vols. I and II, CRC Press, Inc., Boca Raton, Florida.Google Scholar
  20. Marzulli, D., and Lofrumento, N. E. (1985).Boll. Soc. Ital. Biol. LXI, 547–554.Google Scholar
  21. Runswick, M. J., Powell, S. J., Nyren, P., and Walker, J. E. (1987).EMBO J. 6, 1367–1373.Google Scholar
  22. Southard, J. H., Penniston, J. T., and Green, D. E. (1973).J. Biol. Chem. 248, 3546–3550.Google Scholar
  23. Southard, J. H., Blondin, G. A., and Green, D. E. (1974).J. Biol. Chem. 249, 678–681.Google Scholar
  24. Tahiliani, A. G. (1989).J. Biol. Chem. 264, 18426–18432.Google Scholar
  25. Tahiliani, A. G., and Neely, J. R. (1987a).J. Mol. Cell. Cardiol. 19, 1161–1167.CrossRefGoogle Scholar
  26. Tahiliani, A. G., and Neely, J. R. (1987b).J. Biol. Chem. 262, 11607–11610.Google Scholar
  27. Zanotti, F., Marzulli, D., and Lofrumento, N. E. (1985).Boll. Soc. Ital. Biol. Sper. LXI, 113–120.Google Scholar
  28. Zoccoli, M. A., and Karnovsky, M. L. (1980).J. Biol. Chem. 255, 1113–1119.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Arun G. Tahiliani
    • 1
  • Timothy Keene
    • 1
  • Ronald S. Kaplan
    • 2
  1. 1.Department of Biomedical Sciences, College of Allied HealthUniversity of South AlabamaMobile
  2. 2.Department of Pharmacology, College of MedicineUniversity of South AlabamaMobile

Personalised recommendations