Skip to main content
Log in

Energy transduction and transport processes in thermophilic bacteria

  • Minireview
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Bacterial growth at the extremes of temperature has remained a fascinating aspect in the study of membrane function and structure. The stability of the integral membrane proteins of thermophiles make them particularly amenable to study. Respiratory enzymes of thermophiles appear to be functionally similar to the mesophilic enzymes but differ in their thermostability and unusual high turnover rates. Energy coupling at extreme temperatures seems inefficient as suggested by the high maintenance coefficients and the high permeability of the cell membrane to protons. Nevertheless, membranes maintain their structure at these extremes through changes in fatty acid acyl chain composition. Archaebacteria synthesize novel membrane-spanning lipids with unique physical characteristics. Thermophiles have adapted to life at extreme temperatures by using sodium ions rather than protons as coupling ions in solute transport. Genetic and biochemical studies of these systems now reveal fundamental principles of such adaptations. The recent development of reconstitution techniques using membrane-spanning lipids allows a rigorous biochemical characterization of membrane proteins of extreme thermophiles in their natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amelunxen, R. E., and Murdoch, A. L. (1978).CRC Crit. Rev. Microbiol. 6, 343–393.

    Article  CAS  Google Scholar 

  • Anemüller, S., and Schäfer, G. (1990).Eur. J. Biochem. 191, 297–305.

    Article  Google Scholar 

  • Azzi, A. (1980).Biochim. Biophys. Acta 594, 231–252.

    CAS  Google Scholar 

  • Booth, I. A. (1985).Microbiol. Rev. 49, 359–378.

    CAS  Google Scholar 

  • Brock, T. D. (1985).Science 230, 132–138.

    Article  CAS  Google Scholar 

  • Brock, T. D. (1986).Thermophiles; General, Molecular and Applied Microbiology, Wiley, New York.

    Google Scholar 

  • Crielaard, W., Driessen, A. J. M., Molenaar, D., Hellingwerf, K. J., and Konings, W. N. (1988).J. Bacteriol. 170, 1820–1824.

    CAS  Google Scholar 

  • Deguchi, Y., Yamato, I., and Anraku, Y. (1990).J. Biol. Chem. 265, 21704–21708.

    CAS  Google Scholar 

  • Deming, J. W. (1986).Microbiol. Ecol. 12, 111–119.

    Article  Google Scholar 

  • De Vrij, W., Bulthuis, R. A., and Konings, W. N. (1988).J. Bacteriol. 170, 2359–2366.

    Google Scholar 

  • De Vrij, W., Heyne, R. I. R., and Konings W. N. (1989a).Eur. J. Biochem. 178, 763–770.

    Article  Google Scholar 

  • De Vrij, W., Bulthuis, R. A., Van Iwaarden, P. R., and Konings, W. N. (1989b).J. Bacteriol. 171, 1118–1125.

    Google Scholar 

  • De Vrij, W., Speelman, G., Heyne, R. I. R., and Konings, W. N. (1990).FEMS Microb. Rev. 75, 183–200.

    Google Scholar 

  • De Rosa, M., and Gambacorta, A. (1988).Prog. Lipid. Res. 27, 153–175.

    Article  Google Scholar 

  • De Rosa, M., Trincone, A., Nicolaus, B., and Gambacorta, A. (1991). InLife under Extreme Conditions (di Prisco, G., ed.), Springer Verlag, Berlin, pp. 61–87.

    Google Scholar 

  • Dimroth, P. (1987).Microbiol. Rev. 51, 320–340.

    CAS  Google Scholar 

  • Driessen, A. J. M., de Vrij, W., and Konings, W. N. (1985a).Proc. Natl. Acad. Sci. USA 82, 7555–7559.

    Article  CAS  Google Scholar 

  • Driessen, A. J. M., Hellingwerf, K. J., and Konings, W. N. (1985b).Biochim. Biophys. Acta 808, 1–12.

    Article  CAS  Google Scholar 

  • Driessen, A. J. M., Hellingwerf, K. J., and Konings, W. N. (1987).Microb. Sci. 4, 173–180.

    CAS  Google Scholar 

  • Elferink, M. G. L., de Wit, J., Demel, R., Driessen, A. J. M., and Konings, W. N. (1992).J. Biol. Chem. 267, 1375–1381.

    CAS  Google Scholar 

  • Farrand, S. G., Jones, C. W., Linton, J. D., and Stephenson, R. J. (1983).Arch. Microbiol. 135, 276–283.

    Article  CAS  Google Scholar 

  • Gleißner, M., Elferink, M. G. L., Driessen, A. J. M., Konings, W. N., and Schäfer, G. (1992). 7th EBEC reports. Helsinki, Finland, pp. 52.

  • Halpern, Y. S., and Lupo, M. (1965).J. Bacteriol. 90, 1288–1295.

    CAS  Google Scholar 

  • Henderson, P. J. F. (1990).Res. Microbiol. 141, 316–328.

    Article  CAS  Google Scholar 

  • Heyne, R. I. R., de Vrij, W., Crielaard, W., and Konings, W. N. (1991).J. Bacteriol. 173, 791–800.

    CAS  Google Scholar 

  • Hirata, H., Sone, N., Yoshida, H., and Kagawa, Y. (1976).J. Biol. Chem. 79, 1157–1166.

    CAS  Google Scholar 

  • Hirata, H., Kambe, T., and Kagawa, Y. (1984).J. Biol. Chem. 259, 10653–10656.

    CAS  Google Scholar 

  • Kaback, H. R. (1986).Annu. Rev. Biophys. Chem. 15, 279–319.

    Article  CAS  Google Scholar 

  • Kalman, M., Gentry, D. R., and Cashel, M. (1991).Mol. Gen. Genet. 225, 379–386.

    Article  CAS  Google Scholar 

  • Kuhn, H. J., Cometta, S., and Fiechter, A. (1980).Eur. J. Appl. Microbiol. Biotechnol. 10, 303–315.

    Article  Google Scholar 

  • Ludwig, B. (1987).FEMS Microbiol. Rev. 46, 41–56.

    Article  CAS  Google Scholar 

  • Maloy, S. (1990). InThe Bacteria, Vol. XII: Bacterial Energetics (Krulwich, T. A., ed), Academic Press, San Diego, pp. 203–224.

    Google Scholar 

  • McKay, A., Quilter, J., and Jons, C. W. (1982).Arch. Microbiol. 131, 43–50.

    Article  CAS  Google Scholar 

  • Mendoza, D., and Cronan, J. E. (1983).Trends Biochem. Sci. 8, 49–52.

    Article  Google Scholar 

  • Mitchell, P. (1966).Physiol. Rev. 41, 445–502.

    CAS  Google Scholar 

  • Molenaar, D., Crielaard, W., and Hellingerf, K. J. (1988).Biochem. 27, 2014–2023.

    Article  CAS  Google Scholar 

  • Möller, R., and Schäfer, G. (1991).Eur. J. Biochem. 201, 593–600.

    Article  Google Scholar 

  • Ovchinnikov, Y. A., Abdulaev, N. G., Zolotarev, A. S., Shmukler, B. E., Zargarov, A. A., Kutuzov, M. A., Telezhinnskaya, I. N., and Levina, N. B. (1988).FEBS Lett. 231, 237–242.

    Article  CAS  Google Scholar 

  • Padan, E., Züberstein, D., and Schuldiner, S. (1981).Biochim. Biophys. Acta 650, 151–166.

    CAS  Google Scholar 

  • Patel, B. K. C., Monk, C., Littleworth, H., Morgan, H. W., and Daniel, R. M. (1987).Int. J. Syst. Bacteriol. 37, 123–126.

    Article  CAS  Google Scholar 

  • Pierson, B., and Thornber, J. P. (1983).Proc. Natl. Acad. Sci. USA 80, 80–84.

    Article  CAS  Google Scholar 

  • Reizer, J., Grossowicz, N., and Barenhoiz, Y. (1985).Biochim. Biophys. Acta 815, 268–280.

    Article  CAS  Google Scholar 

  • Russell, N. J. (1984).Trends Biochem. Sci. 9, 108–112.

    Article  CAS  Google Scholar 

  • Shiozawa, J. A., Lottspeich, F., and Feick, R. (1987).Eur. J. Biochem. 167, 595–600.

    Article  CAS  Google Scholar 

  • Sinensky, M. (1974).Proc. Natl. Acad. Sci. USA 71, 522–525.

    Article  CAS  Google Scholar 

  • Skulachev, V. P. (1985).Eur. J. Biochem. 151, 199–208.

    Article  CAS  Google Scholar 

  • Speelmans, G., De Vrij, W., and Konings, W. N. (1989).J. Bacteriol. 171, 3788–3795.

    CAS  Google Scholar 

  • Steffens, G. C. M., Biewald, R., and Buse, G. (1987).Eur. J. Biochem. 164, 295–300.

    Article  CAS  Google Scholar 

  • Tolner, B., Poolman, B., and Konings, W. N. (1992a),Mol. Microbiol., in press.

  • Tolner, B., Poolman, B., Wallace, B., and Konings, W. N. (1992b).J. Bacteriol.,174, 2391–2393.

    CAS  Google Scholar 

  • Tolner, B., van der Rest, M. E., Speelmans, G., and Konings, W. N. (1992c). InMolecular mechanisms of transport (Quagliariello, E., and Palmieri, F., eds.), Elsevier, Amsterdam, pp. 43–50.

    Google Scholar 

  • Unemoto, T., Tokuda, H., and Hayashi, M. (1990). InThe Bacteria, Vol. XII: Bacterial Energetics (Krulwich, T. A., ed), Academic Press, San Diego, pp. 33–54.

    Google Scholar 

  • Venturoli, G., and Zannoni, D. (1988).Eur. J. Biochem. 178, 503–509.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konings, W.N., Tolner, B., Speelmans, G. et al. Energy transduction and transport processes in thermophilic bacteria. J Bioenerg Biomembr 24, 601–609 (1992). https://doi.org/10.1007/BF00762352

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762352

Key words

Navigation