Skip to main content
Log in

Proton-coupled bioenergetic processes in extremely alkaliphilic bacteria

  • Minireview
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Oxidative phosphorylation, which involves an exclusively proton-coupled ATP synthase, and pH homeostasis, which depends upon electrogenic antiport of cytoplasmic Na+ in exchange for H+, are the two known bioenergetic processes that require inward proton translocation in extremely alkaliphilic bacteria. Energy coupling to oxidative phosphorylation is particularly difficult to fit to a strictly chemiosmotic model because of the low bulk electrochemical proton gradient that follows from the maintenance of a cytoplasmic pH just above 8 during growth at pH 10.5 and higher. A large quantitative and variable discrepancy between the putative chemiosmotic driving force and the phosphorylation potential results. This is compounded by a nonequivalence between respiration-dependent bulk gradients and artificially imposed ones in energizing ATP synthesis, and by an apparent requirement for specific respiratory chain complexes that do not relate solely to their role in generation of bulk gradients. Special features of the synthase may contribute to the mode of energization, just as novel features of the Na+ cycle may relate to the extraordinary capacity of the extreme alkaliphiles to achieve pH homeostasis during growth at, or sudden shifts to, an external pH of 10.5 and above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avetisyan, A. V., Dibrov, P. A., Semeykina, A. L., Skulachev, V. P., and Sokolov, M. V. (1991).Biochim. Biophys. Acta 1098, 95–104.

    Article  CAS  Google Scholar 

  • Bassilana, M., Damiano, E., and Leblanc, G. (1984).Biochemistry 23, 1015–1022.

    Article  CAS  Google Scholar 

  • Clejan, S., and Krulwich, T. A. (1988).Biochim. Biophys. Acta 946, 40–48.

    Article  CAS  Google Scholar 

  • Clejan, S., Krulwich, T. A., Mondrus, K. R., and Seto-Young, D. (1986).J. Bacteriol. 168, 334–340.

    CAS  Google Scholar 

  • DeVrij, W., Driessen, A. J. M., Hellingwerf, K. H., and Konings, W. N. (1988).Eur. J. Biochem. 156, 431–440.

    Article  Google Scholar 

  • Dunkley, E. A., Jr., Guffanti, A. A., Clejan, S., and Krulwich, T. A. (1991).J. Bacteriol. 173, 1331–1334.

    CAS  Google Scholar 

  • Garcia, M. L., Guffanti, A. A., and Krulwich, T. A. (1983).J. Bacteriol. 156, 1151–1157.

    CAS  Google Scholar 

  • Guffanti, A. A., Chiu, E., and Krulwich, T. A. (1985).Arch. Biochem. Biophys. 239, 327–333.

    Article  CAS  Google Scholar 

  • Guffanti, A. A., Fuchs, R. T., Schneier, M., Chiu, E., and Krulwich, T. A. (1984).J. Biol. Chem. 259, 2971–2975.

    CAS  Google Scholar 

  • Guffanti, A. A., and Hicks, D. B. (1991).J. Gen. Microbiol. 137, 2375–2379.

    CAS  Google Scholar 

  • Guffanti, A. A., and Krulwich, T. A. (1988).J. Biol. Chem. 263, 14748–14752.

    CAS  Google Scholar 

  • Guffanti, A. A., and Krulwich, T. A. (1992).J. Biol. Chem.,267, 9580–9588.

    CAS  Google Scholar 

  • Guffanti, A. A., Susman, P., Blanco, R., and Krulwich, T. A. (1978).J. Biol. Chem. 253, 708–715.

    CAS  Google Scholar 

  • Gupte, S. S., Chazotte, B., Leesnitzer, M. A., and Hackenbrock, C. R. (1991).Biochim. Biophys. Acta 1069, 131–138.

    Article  CAS  Google Scholar 

  • Haines, T. H. (1983).Proc. Natl. Acad. Sci. USA 80, 160–164.

    Article  CAS  Google Scholar 

  • Hicks, D. B., and Krulwich, T. A. (1990).J. Biol. Chem. 265, 20547–20554.

    CAS  Google Scholar 

  • Hicks, D. B., Plass, R. J., and Quirk, P. G. (1991).J. Bacteriol. 173, 5010–5016.

    CAS  Google Scholar 

  • Hirota, N., and Imae, Y. (1983).J. Biol. Chem. 258, 10577–10581.

    CAS  Google Scholar 

  • Hoffmann, A., and Dimroth, P. (1990).Eur. J. Biochem. 194, 423–430.

    Article  CAS  Google Scholar 

  • Hoffmann, A., and Dimroth, P. (1991a).Eur. J. Biochem. 196, 493–497.

    Article  CAS  Google Scholar 

  • Hoffmann, A., and Dimroth, P. (1991b).Eur. J. Biochem. 201, 467–473.

    Article  CAS  Google Scholar 

  • Imae, Y. (1991). InNew Era of Bioenergetics (Mukohata, Y., ed.), Academic Press, Tokyo.

    Google Scholar 

  • Ivey, D. M., and Krulwich, T. A. (1991).Mol. Gen. Genet. 229, 292–300.

    Article  CAS  Google Scholar 

  • Ivey, D. M., and Krulwich, T. A. (1992).Res. Microbiol.,143, 467–470.

    Article  CAS  Google Scholar 

  • Ivey, D. M., Hicks, D. B., Guffanti, A. A., Sobel, G., and Krulwich, T. A. (1990).Mosbach Colloq. 41, 105–113.

    Google Scholar 

  • Ivey, D. M., Guffanti, A. A., Bossewitch, J. S., Padan, E., and Krulwich, T. A. (1991).J. Biol. Chem. 266, 23483–23489.

    CAS  Google Scholar 

  • Ivey, D. M., Guffanti, A. A., and Krulwich, T. A. (1992a). InAlkali Cation Transport Systems (Bakker, E. P., ed.), CRC Press, Boca Raton, Florida, in press.

    Google Scholar 

  • Ivey, D. M., Guffanti, A. A., Shen, Z. H., Kudyan, N., and Krulwich, T. A. (1992b).J. Bacteriol. 174, 4878–4884.

    CAS  Google Scholar 

  • Kallas, T., and Dahlquist, F. W. (1981).Biochemistry 20, 5900–5907.

    Article  CAS  Google Scholar 

  • Kashket, E. R., Blanchard, A. G., and Metzger, W. C. (1980).J. Bacteriol. 143, 128–134.

    CAS  Google Scholar 

  • Khan, S., Dapice, M., and Reese, T. A. (1988).J. Mol. Biol. 202, 575–584.

    Article  CAS  Google Scholar 

  • Khan, S., Ivey, D. M., and Krulwich, T. A. (1992).J. Bacteriol. 174, 5123–5126.

    CAS  Google Scholar 

  • Kitada, M., and Horikoshi, K. (1987).J. Bacteriol. 169, 5761–5765.

    CAS  Google Scholar 

  • Koyama, N., and Nosoh, Y. (1985).Biochim. Biophys. Acta 812, 206–212.

    Article  CAS  Google Scholar 

  • Krulwich, T. A. (1982).FEMS Microbiol. Lett. 13, 299–301.

    Article  Google Scholar 

  • Krulwich, T. A., and Guffanti, A. A. (1989a).Annu. Rev. Microbiol. 43, 435–463.

    Article  CAS  Google Scholar 

  • Krulwich, T. A., and Guffanti, A. A. (1989b).J. Bioenerg. Biomembr. 21, 663–677.

    Article  CAS  Google Scholar 

  • Krulwich, T. A., and Ivey, D. M. (1990). InThe Bacteria: A Treatise on Structure and Function (Sokatch, J., and Ornston, N., eds.) Vol 12, Bacterial Energetics, Krulwich, T. A., ed., Academic Press, New York.

    Google Scholar 

  • Krulwich, T. A., Federbush, J. G., and Guffanti, A. A. (1985).J. Biol. Chem. 260, 4055–4058.

    CAS  Google Scholar 

  • Krulwich, T. A., Guffanti, A. A., Fong, M. Y., Falk, L., and Hicks, D. B. (1986).J. Bacteriol. 165, 884–889.

    CAS  Google Scholar 

  • Krulwich, T. A., Hicks, D. B., Seto-Young, D., and Guffanti, A. A. (1988).Crit. Rev. Microbiol. 16, 15–36.

    Article  CAS  Google Scholar 

  • Laubinger, W., and Dimroth, P. (1987).Eur. J. Biochem. 168, 475–480.

    Article  CAS  Google Scholar 

  • Lewis, R. J., Prince, R., Dutton, P. L., Knaff, D., and Krulwich, T. A. (1981).J. Biol. Chem. 256, 10543–10549.

    CAS  Google Scholar 

  • McLaggan, D., Selwyn, M. J., and Dawson, A. P. (1984).FEBS Letts. 165, 254–258.

    Article  CAS  Google Scholar 

  • McLaggan, D., Selwyn, M. J., Dawson, A. P., and Booth, I. R. (1991).J. Gen. Microbiol. 137, 1709–1714.

    CAS  Google Scholar 

  • Meganathan, R., and Coffell, R. (1985).J. Bacteriol. 164, 911–913.

    CAS  Google Scholar 

  • Mitchell, P. (1961).Biol. Rev. Cambridge. Philos. Soc. 41, 451–502.

    Google Scholar 

  • Poolman, B., Smid, E. J., and Konings, W. N. (1987).J. Bacteriol. 169, 2755–2761.

    CAS  Google Scholar 

  • Quirk, P. G., Guffanti, A. A., Plass, R. J., Clejan, S., and Krulwich, T. A. (1991).Biochim. Biophys. Acta 1058, 131–140.

    Article  CAS  Google Scholar 

  • Ritchie, R. J., and Gibson, J. (1987).Arch. Biochem. Biophys. 258, 332–341.

    Article  CAS  Google Scholar 

  • Rohde, M., Mayer, F., Hicks, D. B., and Krulwich, T. A. (1989).Biochim. Biophys. Acta 985, 233–235.

    Article  CAS  Google Scholar 

  • Rottenberg, H. (1990).Biochim. Biophys. Acta 1018, 1–17.

    Article  CAS  Google Scholar 

  • Sakai, Y., Moritani, C., Tsuda, M., and Tsuchiya, T. (1989).Biochim. Biophys. Acta 973, 450–456.

    Article  CAS  Google Scholar 

  • Sakai-Tomita, Y., Tsuda, M., and Tsuchiya, T. (1991).Biochem. Biophys. Res. Commun. 179, 224–228.

    Article  CAS  Google Scholar 

  • Salhany, J. M., Yamane, T., Shulman, R. G., and Ogawa, S. (1975).Proc. Natl. Acad. Sci. USA 72, 4966–4970.

    Article  CAS  Google Scholar 

  • Schuldiner, S., and Padan, E. (1992). InAlkali Cation Transport Systems (Bakker, E. P., ed.), CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Semeykina, A. L., Skulachev, V. P., Verkhovskaya, M. L., Bulgina, E. S., and Chumakov, K. M. (1989).Eur. J. Biochem. 183, 671–678.

    Article  CAS  Google Scholar 

  • Skulachev, V. P. (1992).Biosci. Rep. 11, in press.

  • Slater, E. C. (1987).Eur. J. Biochem. 166, 459–504.

    Article  Google Scholar 

  • Slonczewski, J. L., Rosen, B. P., Alger, J. R., and Macnab, R. M. (1981).Proc. Natl. Acad. Sci. USA 78, 6271–6275.

    Article  CAS  Google Scholar 

  • Sugiyama, S., Matsukura, H., Koyama, N., Nosoh, Y., and Imae, Y. (1986).Biochim. Biophys. Acta 852, 38–45.

    Article  CAS  Google Scholar 

  • Taglicht, D., Padan, E., and Schuldiner, S. (1991).J. Biol. Chem. 266, 11289–11294.

    CAS  Google Scholar 

  • Teissie, J., Prata, M., LeMassu, A., Stewart, L. C., and Kates, M. (1990).Biochemistry 29, 59–65.

    Article  CAS  Google Scholar 

  • Tokuda, H., and Unemoto, T. (1982).J. Biol. Chem. 266, 11289–11294.

    Google Scholar 

  • Tokuda, H., Asano, M., Shimamura, Y., Unemoto, T., Sugiyama, S., and Imae, Y. (1988).J. Biochem. 103, 650–655.

    CAS  Google Scholar 

  • Westerhoff, H. V., Melandri, B. A., Venturoli, G., Azzone, G. F., and Kell, D. B. (1984).FEBS Lett. 165, 1–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krulwich, T.A., Guffanti, A.A. Proton-coupled bioenergetic processes in extremely alkaliphilic bacteria. J Bioenerg Biomembr 24, 587–599 (1992). https://doi.org/10.1007/BF00762351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762351

Key words

Navigation