Skip to main content
Log in

Evolutionary aspects of cytochromec oxidase

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The presence of additional subunits in cytochrome oxidase distinguish the multicellular eukaryotic enzyme from that of a simple unicellular bacterial enzyme. The number of these additional subunits increases with increasing evolutionary stage of the organism. Subunits I–III of the eukaryotic enzyme are related to the three bacterial subunits, and they are encoded on mito-chondrial DNA. The additional subunits are nuclear encoded. Experimental evidences are presented here to indicate that the lower enzymatic activity of the mammalian enzyme is due to the presence of nuclear-coded subunits. Dissociation of some of the nuclear-coded subunits (e.g., VIa) by laurylmaltoside and anions increased the activity of the rat liver enzyme to a value similar to that of the bacterial enzyme. Further, it is shown that the intraliposomal nucleotides influence the kinetics of ferrocytochromec oxidation by the reconstituted enzyme from bovine heart but not fromP. denitrificans. The regulatory function attributed to the nuclear-coded subunits of mammalian cytochromec oxidase is also demonstrated by the tissue-specific response of the reconstituted enzyme from bovine heart but not from bovine liver to intraliposomal ADP. These enzymes from bovine heart and liver differ in the amino acid sequences of subunits VIa, VIIa, and VIII. The results presented here are taken to indicate a regulation of cytochromec oxidase activity by nuclear-coded subunits which act like receptors for allosteric effectors and influence the catalytic activity of the core enzyme via conformational changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albracht, S. P. J., Van Verseveld, H. W., and Kalkman, M. L. (1980).Biochim. Biophys. Acta 593, 173–186.

    Google Scholar 

  • Antonini, G., Malatesta, F., Sarti, P., Vallone, B., and Brunori, M. (1988).Biochem. J. 256, 835–840.

    Google Scholar 

  • Bisson, R., and Schiavo, G. (1986).J. Biol. Chem. 261, 4373–4376.

    Google Scholar 

  • Bisson, R., and Schiavo, G. (1988).Ann. N.Y. Acad. Sci. 550, 325–336.

    Google Scholar 

  • Bisson, R., Steffens, G. C. M., Capaldi, R. A., and Buse, G. (1982).FEBS Lett. 144, 359–363.

    Google Scholar 

  • Bisson, R., Schiavo, G., and Montecucco, C. (1987).J. Biol. Chem. 262, 5992–5998.

    Google Scholar 

  • Bolgiano, B., Smith, L., and Davies, H. C. (1989).Biochim. Biophys. Acta 973, 227–234.

    Google Scholar 

  • Bombelka, E., Richter, F.-W., Stroh, A., and Kadenbach, B. (1986).Biochem. Biophys. Res. Commun. 140, 1007–1014.

    Google Scholar 

  • Büge, U., and Kadenbach, B. (1986).Eur. J. Biochem. 161, 383–390.

    Google Scholar 

  • Buse, G., Hensel, S., and Fee, J. A. (1989).Eur. J. Biochem. 181, 261–268.

    Google Scholar 

  • Capaldi, R. A., Malatesta, F., and Darley-Usmar, V. M. (1983).Biochim. Biophys. Acta 726, 135–148.

    Google Scholar 

  • Cumsky, M. G., Trueblood, C. E., Ko, C., and Poyton, R. O. (1987).Mol. Cell. Biol. 7, 3511–3519.

    Google Scholar 

  • Darnell, J. E., and Doolittle, W. F. (1986).Proc. Natl. Acad. Sci. USA 83, 1271–1274.

    Google Scholar 

  • Fee, J. A., Kuila, D., Mather, M. W., and Yoshida, T. (1986).Biochim. Biophys. Acta 853, 153–185.

    Google Scholar 

  • Fee, J. A., Mather, M. W., Springer, P., Hensel, S., and Buse, G. (1988).Ann. N.Y. Acad. Sci. 550, 33–38.

    Google Scholar 

  • Gregory, L. C., and Ferguson-Miller, S. (1988).Biochemistry 27, 6307–6314.

    Google Scholar 

  • Haltia, T., Finel, M., Harms, N., Nakari, T., Raitio, M., Wikström, M., and Saraste, M. (1989).EMBO J. 8, 3571–3579.

    Google Scholar 

  • Hill, B. C., and Robinson, N. C. (1986).J. Biol. Chem. 261, 15356–15359.

    Google Scholar 

  • Hüther, F.-J., and Kadenbach, B. (1986).FEBS Lett. 207, 89–94.

    Google Scholar 

  • Hüther, F.-J., and Kadenbach, B. (1987).Biochem. Biophys. Res. Commun. 147, 1268–1275.

    Google Scholar 

  • Hüther, F.-J., and Kadenbach, B. (1988).Biochem. Biophys. Res. Commun. 153, 525–534.

    Google Scholar 

  • Hüther, F.-J., Berden, J., and Kadenbach, B. (1988).J. Bioenerg. Biomembr. 20, 503–516.

    Google Scholar 

  • Kadenbach, B. (1986).J. Bioenerg. Biomembr. 18, 39–54.

    Google Scholar 

  • Kadenbach, B., and Merle, P. (1981).FEBS Lett. 135, 1–11.

    Google Scholar 

  • Kadenbach, B., Büge, U., Jarausch, J., and Merle, P. (1981). InVectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (Palmieri, F.,et al., eds.), Elsevier North-Holland Biomedical Press, pp. 11–23.

  • Kadenbach, B., Hartmann, R., Glanville, R., and Buse, G. (1982).FEBS Lett. 138, 236–238 (1982).

    Google Scholar 

  • Kadenbach, B., Jarausch, J., Hartmann, R., and Merle, P. (1983).Anal. Biochem. 129, 517–521.

    Google Scholar 

  • Kadenbach, B., Kuhn-Nentwig, L., and Büge, U. (1987a).Curr. Top. Bioenerg. 15, 113–161.

    Google Scholar 

  • Kadenbach, B., Stroh, A., Hüther, F.-J., and Berden, J. (1987b). InCytochrome Systems: Molecular Biology and Bioenergetics (Papa, S., Chance, B., and Ernster, L., eds.), Plenum Press, New York, pp. 399–406.

    Google Scholar 

  • Kadenbach, B., Reimann, A., Stroh, A., and Hüther, F.-J. (1988). InOxidases and Related Redox Systems (King, T. E., Mason, H. S., and Morrison, M., eds.), A. R. Liss Inc., New York, pp. 653–668.

    Google Scholar 

  • Kadenbach, B., Stroh, A., Becker, A., Eckerskorn, C., and Lottspeich, F. (1990).Biochim. Biophys. Acta 1015, 368–372.

    Google Scholar 

  • Koppenol, W. H., and Margoliash, E. (1982).J. Biol. Chem. 257, 4426–4437.

    Google Scholar 

  • Kossekova, G., Atanasov, B., Bolli, R., and Azzi, A. (1989).Biochem. J. 262, 591–596.

    Google Scholar 

  • Labonia, N., Müller, M., and Azzi, A. (1988).Biochem. J. 254, 139–145.

    Google Scholar 

  • Lightowlers, R., Takamiya, S., Wessling, R., Lindorfer, M., and Capaldi, R. A. (1989).J. Biol. Chem. 264, 16858–16860.

    Google Scholar 

  • Lightowlers, R., Ewart, G., Aggeler, R., Zhang, Y.-Z., Calavetta, L., and Capaldi, R. A. (1990).J. Biol. Chem. 265, 2677–2681.

    Google Scholar 

  • Ludwig, B. (1980).Biochim. Biophys. Acta 594, 177–189.

    Google Scholar 

  • Ludwig, B. (1987).FEMS Microbiol. Rev. 46, 41–56.

    Google Scholar 

  • Ludwig, B., and Schatz, G. (1980).Proc. Natl. Acad. Sci. USA 77, 196–200.

    Google Scholar 

  • Malatesta, F., Antonini, G., Sarti, P., and Brunori, M. (1987).Biochem. J. 248, 161–165.

    Google Scholar 

  • McEwen, J. E., Ko, C., Kloeckner-Gruissem, B., and Poyton, R. O. (1986).J. Biol. Chem. 261, 11872–11879.

    Google Scholar 

  • Merle, P., and Kadenbach, B. (1982).Eur. J. Biochem. 125, 239–244.

    Google Scholar 

  • Montecucco, C., Schiavo, G., and Bisson, R. (1986).Biochem. J. 234, 241–243.

    Google Scholar 

  • Montecucco, C., Schiavo, G., Bacci, B., and Bisson, R. (1987).Comp. Biochem. Physiol. 87B, 851–856.

    Google Scholar 

  • Müller, M., Schläpfer, B., and Azzi, A. (1988).Proc. Natl. Acad. Sci. USA 85, 6647–6651.

    Google Scholar 

  • Penttilä, T., Saraste, M., and Wikström, M. (1979).FEBS Lett.,101, 295–300.

    Google Scholar 

  • Poole, R. K. (1983).Biochim. Biophys. Acta 726, 205–243.

    Google Scholar 

  • Power, S. D., Lochrie, M. A., Sevarino, K. A., Patterson, T. E., and Poyton, R. O. (1984).J. Biol. Chem. 259, 6564–6570.

    Google Scholar 

  • Poyton, R. O., Trueblood, C. E., Wright, R. M., and Farrell, L. E. (1988).Ann. N.Y. Acad. Sci. 550, 289–307.

    Google Scholar 

  • Prochaska, L. J., and Fink, P. S. (1987).J. Bioenerg. Biomembr. 19, 143–166.

    Google Scholar 

  • Püttner, J., Carafoli, E., and Malatesta, F. (1985).J. Biol. Chem. 260, 3719–3723.

    Google Scholar 

  • Raitio, M., Jalli, T., and Saraste, M. (1987).EMBO J. 6, 2825–2833.

    Google Scholar 

  • Reimann, A., Hüther, F.-J., Berden, J. A., and Kadenbach, B. (1988).Biochem. J. 254, 723–730.

    Google Scholar 

  • Rigoulet, M., Guerin, B., and Denis, M. (1987).Eur. J. Biochem. 168, 275–279.

    Google Scholar 

  • Rosevear, P., Van Aken, T., Baxter, J., and Ferguson-Miller, S. (1980).Biochemistry 19, 4108–4115.

    Google Scholar 

  • Saraste, M., Raitio, M., Jalli, T., Chepuri, V., Lemieux, L., and Gennis, R. (1988).Ann. N.Y. Acad. Sci. 550, 314–324.

    Google Scholar 

  • Schägger, H., and von Jagow, G. (1987).Anal. Biochem. 166, 368–379.

    Google Scholar 

  • Schlerf, A., Droste, M., Winter, M., and Kadenbach, B. (1988).EMBO. J. 7, 2387–2391.

    Google Scholar 

  • Steffens, G. C. M., Buse, G., Oppliger, W., and Ludwig, B. (1983).Biochem. Biophys. Res. Commun. 116, 335–340.

    Google Scholar 

  • Steffens, G. C. M., Biewald, R., and Buse, G. (1987).Eur. J. Biochem. 164, 295–300.

    Google Scholar 

  • Steverding, D., and Kadenbach, B. (1989).Biochem. Biophys. Res. Commun. 160, 1132–1139.

    Google Scholar 

  • Steverding, D., and Kadenbach, B. (1990).J. Bioenerg. Biomembr. 22, 197–205.

    Google Scholar 

  • Stroh, A., and Kadenbach, B. (1986).Eur. J. Biochem. 156, 199–204.

    Google Scholar 

  • Thiel, C., and Kadenbach, B. (1989).FEBS Lett. 251, 270–274.

    Google Scholar 

  • Thompson, D. A., and Ferguson-Miller, S. (1983).Biochemistry 22, 3178–3187.

    Google Scholar 

  • Thompson, D. A., Gregory, L., and Ferguson-Miller, S. (1985).J. Inorg. Biochem. 23, 357–364.

    Google Scholar 

  • Trueblood, C. E., and Poyton, R. O. (1987).Mol. Cell. Biol. 7, 3520–3526.

    Google Scholar 

  • Van Beeumen, J. J., Van Kuilenberg, A. B. P., Van Bun, S., Van den Boert, C., Tager, J. M., and Muijsers, A. O. (1990).FEBS Lett. 263, 213–216.

    Google Scholar 

  • Van Kuilenberg, A. B. P., Muijsers, A. O., Demol, H., Dekker, H. L., and Van Beeumen, J. J. (1988).FEBS Lett. 240, 127–132.

    Google Scholar 

  • Werner, S. (1977).Eur. J. Biochem. 79, 103–110.

    Google Scholar 

  • Wikström, M., Krab, K., and Saraste, M., eds. (1981).Cytochrome Oxidase. A Synthesis, Academic Press, New York.

    Google Scholar 

  • Yamanaka, T., Fukumori, Y., Yamazaki, T., Kato, H., and Nakayama, K. (1985).J. Inorg. Biochem. 23, 273–277.

    Google Scholar 

  • Yamazaki, R. K. (1975).J. Biol. Chem. 250, 7924–7930.

    Google Scholar 

  • Yanamura, W., Zhang, Y.-Z., Takamiya, S., and Capaldi, R. A. (1988).Biochemistry 27, 4909–4914.

    Google Scholar 

  • Yang, D. Y., Oyaizu, Y., Oyaizu, H., Olsen, G. J., and Woese, C. R. (1985).Proc. Natl. Acad. Sci. USA 82, 4443–4447.

    Google Scholar 

  • Zimmermann, B. H., Nitsche, C. I., Fee, J. A., Rusnak, F., and Münck, E. (1988).Proc. Natl. Acad. Sci. USA 85, 5779–5783.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadenbach, B., Stroh, A., Hüther, F.J. et al. Evolutionary aspects of cytochromec oxidase. J Bioenerg Biomembr 23, 321–334 (1991). https://doi.org/10.1007/BF00762225

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762225

Key Words

Navigation