Journal of Bioenergetics and Biomembranes

, Volume 23, Issue 2, pp 291–302 | Cite as

Cytochromec oxidase metal centers: Location and function

  • Michele Müller
  • Angelo Azzi
Mini-Review

Abstract

Cytochromec oxidase ofParacoccus denitrificans is spectroscopically and functionally very similar to the mammalian enzyme. However, it has a very much simpler quaternary structure, consisting of only three subunits instead of the 13 of the bovine enzyme. The known primary structure of theParacoccus denitrificans subunits, the knowledge of a large number of sequences from other species, and data on the controlled proteolytic digestion of the enzyme allow structural restrictions to be placed on the models describing the binding of the active metal centers to the polypeptide structure.

Key Words

Paracoccus denitrificans Cytochromec oxidase hemea copper A, B, and C electron transfer proton pump 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adman, E. T. (1985). InMetalloproteins (Harrison, P., ed.), Verlag Chemie, Weinheim, Germany, pp. 1–42.Google Scholar
  2. Ambler, R. P., and Tobari, J. (1985).Biochem. J. 232, 451–457.Google Scholar
  3. Antalis, T. M., and Palmer, G. (1982).J. Biol. Chem. 257, 6194–6206.Google Scholar
  4. Argade, P. V., Ching, Y., Sassaroli, M., and Rousseau, D. L. (1986).J. Biol. Chem. 261, 5969–5973.Google Scholar
  5. Artzatbanov, V. Y., Konstantinov, A. A., and Skulachev, V. P. (1978).FEBS Lett. 87, 188–195.Google Scholar
  6. Azzi, A., and Müller, M. (1990).Arch. Biochem. Biophys. 280, 242–251.Google Scholar
  7. Babcock, G. T., and Callahan, P. M. (1983).Biochemistry 22, 2314–2319.Google Scholar
  8. Baker, G. M., and Palmer, G. (1987).Biochemistry 26, 30–38.Google Scholar
  9. Bisson, R. (1990). InBioelectrochemistry III: Charge Separation across Biomembranes (Milazzo, G., and Blank, M., eds.), Plenum Press, New York, pp. 1–25.Google Scholar
  10. Bolli, R., Nalecz, K. A., and Azzi, A. (1986).J. Bioenerg. Biomembr. 18, 277–284.Google Scholar
  11. Bombelka, E., Richter, F.-W., Stroh, A., and Kadenbach, B. (1986).Biochem. Biophys. Res. Commun. 140, 1007–1014.Google Scholar
  12. Brunori, M., Antonini, G., Malatesta, F., Sarti, P., and Wilson, M. (1987).Eur. J. Biochem. 169, 1–8.Google Scholar
  13. Chan, S. I., and Li, P. M. (1990).Biochemistry 29, 1–12.Google Scholar
  14. Chance, B., Kumar, C., Powers, L., and Ching, Y. C. (1983).Biophys. J. 44, 353–363.Google Scholar
  15. Chepuri, V., Lemieux, L., Au, C-T., and Gennis, R. B. (1990).J. Biol. Chem. 265, 11185–11192.Google Scholar
  16. Cline, J., Reinhammer, B., Jemsen, P., Venters, R., and Hoffmann, B. M. (1983).J. Biol. Chem. 258, 5124–5128.Google Scholar
  17. DeVrij, W., Heyne, R. I. R., and Konings, W. N. (1989).Eur. J. Biochem. 178, 763–770.Google Scholar
  18. Einarsdóttir, O., and Caughey, W. S. (1985).Biochem. Biophys. Res. Commun. 129, 840–847.Google Scholar
  19. Ettinger, M. J. (1974).Biochemistry 13, 1242–1247.Google Scholar
  20. Fang, H., Lin, R.-J., and Gennis, R. B. (1989).J. Biol. Chem. 264, 8026–8032.Google Scholar
  21. Farrington, G. K., Kumar, A., and Villafranca, J. J. (1990).J. Biol. Chem. 265, 1036–1040.Google Scholar
  22. Fee, J. A., Kuila, D., Mather, M. W., and Yoshida, T. (1986).Biochim. Biophys. Acta 853, 153–185.Google Scholar
  23. Fukumori, Y., Watanabe, K., and Yamanaka, T. (1987).J. Biochem. 102, 777–784.Google Scholar
  24. Fujiwara, T., Fukumori, Y., and Yamanaka, T. (1989).J. Biochem. 105, 287–292.Google Scholar
  25. Gelles, J., Blair, D. F., and Chan, S. I. (1986).Biochim. Biophys. Acta 853, 205–236.Google Scholar
  26. Germann, U. A., Müller, G., Hunziker, P. E., and Lerch, K. (1988).J. Biol. Chem. 263, 885–896.Google Scholar
  27. Hall, J., Moubarak, A., O'Brien, P., PingPan, L., Cho, I., and Millet, F. (1988).J. Biol. Chem. 263, 8142–8149.Google Scholar
  28. Hemmerich, P. (1966). InThe Biochemistry of Copper (Peisach, J., Aisen, P., and Blumberg, W. E. eds.), Academic Press, New York, pp. 15–34.Google Scholar
  29. Hill, B. C., Greenwood, C., and Nicholls, P. (1986).Biochim. Biophys. Acta 853, 91–113.Google Scholar
  30. Huber, R. (1989).EMBO J. 8, 2125–2147.Google Scholar
  31. Hulse, C. L., and Averill, B. A. (1990).Biochem. Biophys. Res. Commun. 166, 729–735.Google Scholar
  32. Karlsson, B. G., Aasa, R., Malmström, B. G., and Lundberg, L. G. (1989).FEBS Lett. 253, 99–102.Google Scholar
  33. Koschinsky, M. L., Funk, W. D., vanOst, B. A., and MacGillivray (1986).Proc. Natl. Acad. Sci. USA 83, 5086–5090.Google Scholar
  34. Kumar, C., Naqui, A., Powers, L., Ching, Y., and Chance, B. (1988).J. Biol. Chem. 263, 7159–7163.Google Scholar
  35. Li, P. M., Gelles, J., Chan, S. I., Sullivan, R. J., and Scott, R. A. (1987).Biochemistry 26, 2091–2095.Google Scholar
  36. Li, P. M., Malmström, B. G., and Chan, S. I. (1989).FEBS Lett. 248, 210–211.Google Scholar
  37. Ludwig, B. (1987).FEBS Microbiol. Rev. 46, 41–56.Google Scholar
  38. Ludwig, B., and Schatz, G. (1980).Proc. Natl. Acad. Sci. USA 77, 196–200.Google Scholar
  39. Martin, C. T., Scholes, C. P., and Chan, S. I. (1985).J. Biol. Chem. 260, 2857–2861.Google Scholar
  40. Martin, C. T., Scholes, C. P., and Chan, S. I. (1988).J. Biol. Chem. 263, 8420–8429.Google Scholar
  41. Meisch, H. U., and Kappesser, S. (1987).Biochim. Biophys. Acta 925, 234–237.Google Scholar
  42. Messerschmidt, A., and Huber, R. (1990).Eur. J. Biochem. 187, 341–352.Google Scholar
  43. Morgan, J. E., Li, P. M., Jang, D. J., El-Sayed, M. A., and Chan, S. I. (1989).Biochemistry 28, 6975–6983.Google Scholar
  44. Müller, M., and Azzi, A. (1988).Ann. N.Y. Acad. Sci. 550, 13–21.Google Scholar
  45. Müller, M., and Azzi, A. (1990). InBioenergetics: Molecular Biology, Biochemistry, and Pathology (Chong, H. K., and Ozawa, T., eds.), Plenum Press, New York, in press.Google Scholar
  46. Müller, M., Labonia, N., and Azzi, A. (1988a).Biochem. Biophys. Res. Commun. 154, 1260–1265.Google Scholar
  47. Müller, M., Schläpfer, B., and Azzi, A. (1988b).Proc. Natl. Acad. Sci. USA 85, 6647–6651.Google Scholar
  48. Müller, M., Schläpfer, B., and Azzi, A. (1988c).Biochemistry 27, 7546–7551.Google Scholar
  49. Murata, M., Richardson, J. S., and Sussman, J. L. (1985).Proc. Natl. Acad. Sci. USA 82, 3073–3077.Google Scholar
  50. Naqui, A., and Chance, B. (1986).Annu. Rev. Biochem. 55, 137–166.Google Scholar
  51. Naqui, A., Powers, L., Lundeen, M., Constantinescu, A., and Chance, B. (1988).J. Biol. Chem. 263, 12342–12345.Google Scholar
  52. Numata, M., Yamazaki, T., Fukumori, Y., and Yamanaka, T. (1989).J. Biochem. 105, 245–248.Google Scholar
  53. Öblad, M., Selin, E., Malmström, B., Strid, L., Aasa, R., and Malmström, B. G. (1989).Biochim. Biophys. Acta 975, 267–270.Google Scholar
  54. Ohkawa, J., Okada, N., Shinmyo, A., and Takano, M. (1989).Proc. Natl. Acad. Sci. USA 86, 1239–1243.Google Scholar
  55. Powers, L., and Kincaid, B. M. (1989).Biochemistry 28, 4461–4468.Google Scholar
  56. Powers, L., Chance, B., Ching, Y., and Angiolillo, P. (1981).Biophys. J. 34, 465–498.Google Scholar
  57. Puustinen, A., Finel, M., Virkki, M., and Wikström, M. (1989).FEBS Lett. 249, 163–167.Google Scholar
  58. Raitio, M., Jalli, T., and Saraste, M. (1987).EMBO J. 6, 2825–2833.Google Scholar
  59. Raitio, M., Pispa, J. M., Metso, T., and Saraste, M. (1990).FEBS Lett. 261, 431–435.Google Scholar
  60. Robertson, J. G., Desai, P. R., Kumar, A., Farrington, G. K., Fitzpatrick, P. F., and Villafranca, J. J. (1990).J. Biol. Chem. 265, 1029–1035.Google Scholar
  61. Salerno, J. C., Bolgiano, B., Poole, R. K., Gennis, R. B., and Ingledew, W. J. (1990).J. Biol. Chem. 265, 4364–4368.Google Scholar
  62. Saraste, M., Raitio, M., Jalli, T., Chepuri, V., Lemieux, L., and Gennis, R. (1988).Ann. N. Y. Acad. Sci. 550, 314–324.Google Scholar
  63. Sassaroli, M., Ching, Y., Dasgupta, S., and Rousseau, D. L. (1989).Biochemistry 28, 3128–31232.Google Scholar
  64. Scott, R. A., Zumft, W. G., Coyle, C. L., and Dooley, D. M. (1989).Proc. Natl. Acad. Sci. USA 86, 4082–4086.Google Scholar
  65. Seelig, A., Ludwig, B., Seelig, J., and Schatz, G. (1981).Biochim. Biophys. Acta 636, 162–167.Google Scholar
  66. Steffens, G., and Buse, G. (1979).Hoppe-Seyler's Z. Physiol. Chem. 360, 613–619.Google Scholar
  67. Steffens, G. C. M., Biewald, R., and Buse, G. (1987).Eur. J. Biochem. 164, 295–300.Google Scholar
  68. Stevens, T. H., and Chan, S. I. (1981).J. Biol. Chem. 256, 1069–1071.Google Scholar
  69. Stevens, T. H., Martin, C. T., Wang, H., Brudwig, G. W., Scholes, C. P., and Chan, S. I. (1982).J. Biol. Chem. 257, 12106–12113.Google Scholar
  70. Suzuki, S., Yoshimura, T., Kohzuma, T., Shidara, S., Masuko, M., Sakurai, T., and Iwasaki, H. (1989).Biochem. Biophys. Res. Commun. 164, 1366–1372.Google Scholar
  71. Trost, J. T., McManus, J. D., Freeman, J. C., Ramakrishna, B. L., and Blankenship, R. E. (1988).Biochemistry 27, 7855–7863.Google Scholar
  72. Viebrock, A., and Zumft, W. G. (1988).J. Bacteriol. 170, 4658–4668.Google Scholar
  73. Whittaker, M. M., and Whittaker, J. W. (1990).J. Biol. Chem. 265, 9610–9613.Google Scholar
  74. Whittaker, M. M., De Vito, V. L., Asher, S. A., and Whittaker, J. W. (1989).J. Biol. Chem. 264, 7104–7106.Google Scholar
  75. Wikström, M. (1989).Nature (London)338, 776–778.Google Scholar
  76. Wikström, M., Krab, K., and Saraste, M. (1981).Cytochrome Oxidase, A Synthesis, Academic Press, London.Google Scholar
  77. Witt, S. N., and Chan, S. I. (1987).J. Biol. Chem. 262, 1446–1448.Google Scholar
  78. Yoshizaki, S., Tera, T., Takabashi, Y., Tsukihara, T., and Caughey, W. S. (1988).Proc. Natl. Acad. Sci. USA 85, 1354–1358.Google Scholar
  79. Yoshizaki, F., Sugimura, Y., and Shimokoriyama, M. (1981).J. Biochem. 89, 1533–1539.Google Scholar
  80. Yoshikawa, F., Fukazawa, T., Mishina, Y., and Sugimura, Y. (1989).J. Biochem. 106, 282–288.Google Scholar
  81. Zimmermann, B. H., Nitsche, C. I., Fee, J. A., Rusnak, F., and Münk, E. (1988).Proc. Natl. Acad. Sci. USA 85, 5779–5783.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Michele Müller
    • 1
  • Angelo Azzi
    • 1
  1. 1.Institut für Biochemie und Molekularbiologie der Universität BernBernSwitzerland

Personalised recommendations