Skip to main content
Log in

Cytochromec oxidase inParacoccus denitrificans. Protein, chemical, structural, and evolutionary aspects

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Preparations and protein chemical characterizations performed with cytochromec oxidase (E.C. 1.9.3.1) from the purple bacteriumParacoccus denitrificans are reviewed. The simplest catalytically competent complex of the enzyme consists of two subunits of 62012 and 27999 Da. The theoretical hemea/protein ratio of the purified enzyme is 22.0 nmol/mg. The amino acid sequences of both proteins are compared with examples of subunits I and II of mitochondrial terminal oxidases from the main kingdoms of eukaryotes. The significance of the emerging conserved features such as membrane penetration patterns, invariant residues, stoichiometry, and sites of prosthetic groups are discussed. TheParacoccus enzyme represents the only prokaryotic oxidase detailed so far, which is directly related to the mitochondrial oxidases by common ancestry in the growing O2 atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adman, E. T., Stenkamp, R. E., Sieker, L. C., and Jensen, L. H. (1978).J. Mol. Biol. 123, 35–47.

    Google Scholar 

  • Altmann, R. (1890). InDie Elementarorganismen und ihre Beziehung zu den Zellen, Veit, Leipzig.

    Google Scholar 

  • Ambler, R. P., Meyer, T. E., Kamen, M. D., Schickman, S. A., and Sawyez, L. (1981).J. Mol. Biol. 147, 351–356.

    Google Scholar 

  • Anderson, S., Bankier, A. T., Barrell, B. G., De Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981).Nature (London)290, 457–465.

    Google Scholar 

  • Anderson, S., De Bruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G. (1982).J. Mol. Biol. 156, 683–718.

    Google Scholar 

  • Anraku, Y., and Gennis, R. B. (1989).Trends Biochem. Sci. 12, 262–266.

    Google Scholar 

  • Azzi, A., Bill, K., Bolli, R., Casey, R. P., Nalecz, K. A., and O'Shea, P. (1985). InStructure and Properties of Cell Membranes (Benga, G., ed.), Vol. II, CRC Press, pp. 105–138.

  • Berry, E. A., and Trumpower, B. L. (1985).J. Biol. Chem. 260, 2458–2467.

    Google Scholar 

  • Bisson, R., and Montecucco, C. (1985).J. Inorg. Biochem. 23, 177–183.

    Google Scholar 

  • Bonen, L., Boer, P. H., McIntosh, J. E., and Gray, M. W. (1987).Nucleic Acids Res. 15, 6734.

    Google Scholar 

  • Bonitz, S. G., Coruzzi, G., Thalenfeld, B. E., Tzagoloff, A., and Macino, G. (1980).J. Biol. Chem. 255, 12927–12941.

    Google Scholar 

  • Brunori, M., Colosimo, A., Rainoni, G., Wilson, M. T., and Antonini, E. (1979).J. Biol. Chem. 254, 10769–10775.

    Google Scholar 

  • Buse, G., Steffens, G. J., and Steffens, G. C. M. (1978).Hoppe-Seyler's Z. Physiol. Chem. 359, 1011–1013.

    Google Scholar 

  • Buse, G., Steffens, G. C. M., and Meinecke, L. (1983). InStructure and Function of Membrane Proteins (Quagliariello, E., and Palmieri, F., eds.), Elsevier Science Publishers, pp. 131–138.

  • Buse, G., Biewald, R., Raabe, G. and Fleischhauer, J. (1984).3rd EBEC Reprints, 119–120.

  • Buse, G., Meinecke, L., and Bruch, B. (1985).J. Inorg. Biochem. 23, 149–153.

    Google Scholar 

  • Buse, G., Steffens, G. C. M., Biewald, R., Bruch, B., and Hensel, S. (1987). InCytochrome Systems (Papa, S., Chance, B., and Ernster, L., eds.), Plenum Press, New York, pp. 791–793.

    Google Scholar 

  • Buse, G., Hensel, S., and Fee, J. A. (1989).Eur. J. Biochem. 181, 261–268.

    Google Scholar 

  • Cavalier-Smith, T. (1987).Ann. N.Y. Acad. Sci. 503, 17–54.

    Google Scholar 

  • Coruzzi, G., and Tzagoloff, A. (1979).J. Biol. Chem. 254, 9324–9330.

    Google Scholar 

  • Covello, P. S., and Gray, M. W. (1989).Nature (London)341, 662–665.

    Google Scholar 

  • Craig, T. M., Scholes, C. P., and Chan, S. I. (1988).J. Biol. Chem. 263, 8420–8429.

    Google Scholar 

  • Deatherage, J. F., Henderson, R., and Capaldi, R. A. (1982).J. Mol. Biol. 158, 500–514.

    Google Scholar 

  • Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1985).Nature (London)318, 618–624.

    Google Scholar 

  • Dickerson, R. E., Timkovich, R., and Almassy, R. J. (1976).J. Mol. Biol. 100, 473–491.

    Google Scholar 

  • Einarsdóttir, O., and Caughey, W. S. (1984).Biochem. Biophys. Res. Commun. 124, 836–842.

    Google Scholar 

  • Einarsdóttir, O., and Caughey, W. S. (1985).Biochem. Biophys. Res. Commun. 129, 840–847.

    Google Scholar 

  • Fee, J. A., Mather, M. W., Springer, P., Hensel, S., and Buse, G. (1988).Cytochrome Oxidase: Structure, Function, and Physiopathology (Brunori, M., and Chance, B., eds.),Ann. N. Y. Acad. Sci. 550, 33–38.

    Google Scholar 

  • Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magum, L. J., Zablen, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R. (1980).Science 209, 457–463.

    Google Scholar 

  • Fukumori, Y., Nakayama, K., and Yamanaka, T., (1985).J. Biochem. 98, 493–499.

    Google Scholar 

  • Haltia, T., Puustinen, A., and Finel, M. (1988).Eur. J. Biochem. 172, 543–546.

    Google Scholar 

  • Hensel, S., and Buse, G. (1990).Biol. Chem. Hoppe-Seyler 371, 411–422.

    Google Scholar 

  • Hensgens, L. A. M., Brakenhoff, J., De Vries, B. F., Sloof, P., Tromp, M. C., Van Boom, J. H., and Benne, R. (1984).Nucleic Acids Res. 12, 7327–7344.

    Google Scholar 

  • Holm, L., Saraste, M., and Wikström, M. (1987).EMBO J. 6, 2819–2823.

    Google Scholar 

  • Huber, R. (1989).EMBO J. 8, 2125–2147.

    Google Scholar 

  • John, P., and Whatley, F. R. (1977).Biochim. Biophys. Acta 463, 129–153.

    Google Scholar 

  • Jukes, T. H. (1990).J. Mol. Evol. 30, 1–2.

    Google Scholar 

  • Kroneck, P. M. H., Antholine, W. A., Riester, J., and Zumft, W. G. (1988).FEBS Lett. 242, 70–74.

    Google Scholar 

  • Kyte, J., and Doolittle, R. F. (1982).J. Mol. Biol. 157, 105–132.

    Google Scholar 

  • Levine, S. (1988). InOxidases and Related Redox Systems (King, R. E., Mason, H. S., and Morrison, M., eds.), Vol. 274, Alan R. Liss, Inc., New York, pp. 111–126.

    Google Scholar 

  • Ludwig, B., and Schatz, G. (1980).Proc. Natl. Acad. Sci. USA 77, 196–200.

    Google Scholar 

  • Ludwig, B., Grabo, M., Gregor, I., Lustig, A., Regenass, M., and Rosenbusch, J. P. (1982).J. Biol. Chem. 257, 5576–5578.

    Google Scholar 

  • Mather, M. W., Springer, P., and Fee, J. A. (1990). InThe Molecular Basis of Bacterial Metabolism (Hauska, G. and Thauer, R., eds.) 41st Mosbach Colloquium, Springer Verlag, pp. 94–104.

  • Merle, P., and Kadenbach, B. (1980).Eur. J. Biochem. 105, 499–507.

    Google Scholar 

  • Pratje, E., Mannhaupt, G., Michaelis, G., and Beyreuther, K. (1983).EMBO J. 2, 1049–1054.

    Google Scholar 

  • Protein Information Resource (PIR) databank, Georgetown University U.S. Release 23, 1989.

  • Raitio, M., Jalli, T., and Saraste, M. (1987).EMBO J. 6, 2825–2833.

    Google Scholar 

  • Schroedl, N. A., and Hartzell, C. R. (1977).Biochemistry 16, 4916–4965.

    Google Scholar 

  • Seelig, A., Ludwig, B., Seelig, J., and Schatz, G. (1981).Biochim. Biophys. Acta 636, 162–167.

    Google Scholar 

  • Sevarino, K. A., and Poyton, R. O. (1980).Proc. Natl. Acad. Sci. USA 77, 142–146.

    Google Scholar 

  • Sone, N., and Yanagita, Y. (1982).Biochim. Biophys. Acta 682, 216–226.

    Google Scholar 

  • Stackebrandt, E. (1986).Forum Mikrobiol. 5, 255–260.

    Google Scholar 

  • Steffens, G., and Buse, G. (1976).Hoppe-Seyler's Z. Physiol. Chem. 357, 1125–1137.

    Google Scholar 

  • Steffens, G. C. M., and Buse, G. (1990). 6th EBEC Reports.

  • Steffens, G. C. M., Buse, G., Oppliger, W., and Ludwig, B. (1983).Biochem. Biophys. Res. Commun. 116, 335–340.

    Google Scholar 

  • Steffens, G. C. M., Biewald, R., and Buse, G. (1987).Eur. J. Biochem. 164, 295–300.

    Google Scholar 

  • Steffens, G. C. M., Pascual, E., and Buse, G. (1990).J. Chromatogr. 527, 297–299.

    Google Scholar 

  • Steinrücke, P., Steffens, G. C. M., Panskus, G., Buse, G., and Ludwig, B. (1987).Eur. J. Biochem. 167, 431–439.

    Google Scholar 

  • Tanaka, M., Haniu, M., Matsueda, G., and Yasunobu, K. T. (1971).J. Biol. Chem. 246, 3953–3960.

    Google Scholar 

  • Van Gelder, B. F., and Beinert, H. (1969).Biochim. Biophys. Acta 189, 1–24.

    Google Scholar 

  • Verheul, E. A. M., Draijer, J. W., Dentener, I. K., and Muijsers, A. O. (1981).Eur. J. Biochem. 119, 401–408.

    Google Scholar 

  • Viebrock, A., and Zumft, W. G. (1988).J. Bacteriol. 170, 4658–4668.

    Google Scholar 

  • Von Heijne, G. (1983).Eur. J. Bicohem. 133, 17–21.

    Google Scholar 

  • Welinder, K. G., and Mikkelsen, L. (1983).FEBS Lett. 157, 233–239.

    Google Scholar 

  • Wikström, M., and Saraste, M. (1984). InBioenergetics (Ernster, L., ed.), Elsevier Science Publishers B.V., Amsterdam, pp. 49–94.

    Google Scholar 

  • Willems, U. (1990). Ph.D. thesis, RWTH Achen.

    Google Scholar 

  • Woese, C. R. (1987).Microbiol. Rev. 51, 221–271.

    Google Scholar 

  • Woese, C. R., Gibson, J., and Fox, E. (1980).Nature (London)283, 212–214.

    Google Scholar 

  • Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J., and Woese, C. R. (1985).Proc. Natl. Acad. Sci. USA 82, 4443–4447.

    Google Scholar 

  • Yoshida, T., Lorence, R. M., Choc, M. G., Tarr, G. E., Findling, K. L., and Fee, J. A. (1984).J. Biol. Chem. 259, 112–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buse, G., Steffens, G.C.M. Cytochromec oxidase inParacoccus denitrificans. Protein, chemical, structural, and evolutionary aspects. J Bioenerg Biomembr 23, 269–289 (1991). https://doi.org/10.1007/BF00762222

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762222

Key Words

Navigation