Journal of Bioenergetics and Biomembranes

, Volume 23, Issue 2, pp 163–185 | Cite as

Metabolic regulation including anaerobic metabolism inParacoccus denitrificans

  • A. H. Stouthamer
Mini-Review

Abstract

Under anaerobic circumstances in the presence of nitrateParacoccus denitrificans is able to denitrify. The properties of the reductases involved in nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase are described. For that purpose not only the properties of the enzymes ofP. denitrificans are considered but also those fromEscherichia coli, Pseudomonas aeruginosa, andPseudomonas stutzeri. Nitrate reductase consists of three subunits: the α subunit contains the molybdenum cofactor, the β subunit contains the iron sulfur clusters, and the γ subunit is a special cytochromeb. Nitrate is reduced at the cytoplasmic side of the membrane and evidence for the presence of a nitrate-nitrite antiporter is presented. Electron flow is from ubiquinol via the specific cytochromeb to the nitrate reductase. Nitrite reductase (which is identical to cytochromecd1) and nitrous oxide reductase are periplasmic proteins. Nitric oxide reductase is a membrane-bound enzyme. Thebc1 complex is involved in electron flow to these reductases and the whole reaction takes place at the periplasmic side of the membrane. It is now firmly established that NO is an obligatory intermediate between nitrite and nitrous oxide. Nitrous oxide reductase is a multi-copper protein. A large number of genes is involved in the acquisition of molybdenum and copper, the formation of the molybdenum cofactor, and the insertion of the metals. It is estimated that at least 40 genes are involved in the process of denitrification. The control of the expression of these genes inP. denitrificans is totally unknown. As an example of such complex regulatory systems the function of thefnr, narX, andnarL gene products in the expression of nitrate reductase inE. coli is described. The control of the effects of oxygen on the reduction of nitrate, nitrite, and nitrous oxide are discussed. Oxygen inhibits reduction of nitrate by prevention of nitrate uptake in the cell. In the case of nitrite and nitrous oxide a competition between reductases and oxidases for a limited supply of electrons from primary dehydrogenases seems to play an important role. Under some circumstances NO formed from nitrite may inhibit oxidases, resulting in a redistribution of electron flow from oxygen to nitrite.P. denitrificans contains three main oxidases: cytochromeaa3, cytochromeo, and cytochromeco. Cytochromeo is proton translocating and receives its electrons from ubiquinol. Some properties of cytochromeco, which receives its electrons from cytochromec, are reported. The control of the formation of these various oxidases is unknown, as well as the control of electron flow in the branched respiratory chain. Schemes for aerobic and anaerobic electron transport are given. Proton translocation and charge separation during electron transport from various electron donors and by various electron transfer pathways to oxygen and nitrogenous oxide are given. The extent of energy conservation during denitrification is about 70% of that during aerobic respiration. In sulfate-limited cultures (in which proton translocation in the NADH-ubiquinone segment of the respiratory chain is lost) the extent of energy conservation is about 60% of that under substrate-limited conditions. These conclusions are in accordance with measurements of molar growth yields.

Key Words

P. denitrificans denitrification nitrate reductase nitrite reductase nitric oxide reductase nitrous oxide reductase nitric oxide copper transport cytochrome oxidases proton translocation charge separation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albracht, S. P. J., van Verseveld, H. W., Hagen, W. R., and Kalkman, M. L. (1980).Biochim. Biophys. Acta 593, 173–186.Google Scholar
  2. Alefounder, P. R., and Ferguson, S. J. (1980).Biochem. J. 192, 231–240.Google Scholar
  3. Alefounder, P. R., and Ferguson, S. J. (1981).Biochem. Biophys. Res. Commun. 98, 778–784.Google Scholar
  4. Alefounder, P. R., and Ferguson, S. J. (1982).Biochem. Biophys. Res. Commun. 104, 1149–1155.Google Scholar
  5. Alefounder, P. R., McCarthy, J. E. G., and Ferguson, S. J. (1981).FEMS Microbiol. Lett. 12, 321–326.Google Scholar
  6. Alefounder, P. R., Greenfield, A. J., McCarthy, J. E. G., and Ferguson, S. J. (1983).Biochim. Biophys. Acta 724, 20–39.Google Scholar
  7. Anraku, Y., and Gennis, R. B. (1987).Trends Biochem. Sci. 12, 262–266.Google Scholar
  8. Ballard, A. L., and Ferguson, S. J. (1988).Eur. J. Biochem. 174, 207–212.Google Scholar
  9. Beijerinck, M., and Minkeman, D. C. J. (1910).Gerubralbl. Bakteriol. Parasitenk. Abl.II25, 30–63.Google Scholar
  10. Berry, E., and Trumpower, B. L. (1985).J. Biol. Chem. 260, 2458–2467.Google Scholar
  11. Blasco, F., Iobbi, C., Giordano, G., Chippaux, M., and Bonnefoy, V. (1989).Mol. Gen. Genet. 218, 249–256.Google Scholar
  12. Boogerd, F. C., van Verseveld, H. W., and Stouthamer, A. H. (1980).FEBS Lett. 113, 279–284.Google Scholar
  13. Boogerd, F. C., van Verseveld, H. W., and Stouthamer, A. H. (1981).Biochim. Biophys. Acta 638, 181–191.Google Scholar
  14. Boogerd, F. C., van Verseveld, H. W., and Stouthamer, A. H. (1983a).Biochim. Biophys. Acta 723, 415–427.Google Scholar
  15. Boogerd, F. C., Appeldoorn, K. J., and Stouthamer, A. H. (1983b).FEMS Microbiol. Lett. 20, 455–460.Google Scholar
  16. Boogerd, F. C., van Verseveld, H. W., Torenvliet, D., Braster, M., and Stouthamer, A. H. (1984).Arch. Microbiol. 139, 344–350.Google Scholar
  17. Bosma, G. (1989). Ph.D. Thesis, Vrije Universiteit, Amsterdam.Google Scholar
  18. Bosma, G., Braster, M., Stouthamer, A. H., and van Verseveld (1987a).Eur. J. Biochem. 165, 665–670.Google Scholar
  19. Bosma, G., Braster, M., Stouthamer, A. H., and van Verseveld, H. W. (1987b).Eur. J. Biochem. 165, 657–663.Google Scholar
  20. Burke, K. A., Calder, K., and Lascelles, J. (1980).Arch. Microbiol. 126, 155–159.Google Scholar
  21. Calder, K. M., and Lascelles, J. (1984).Arch. Microbiol. 137, 226–230.Google Scholar
  22. Carr, G. J., Page, M. D., and Ferguson, S. J. (1989).Eur. J. Biochem. 179, 683–692.Google Scholar
  23. Carver, M. A., and Jones, C. W. (1983).FEBS Lett. 155, 187–191.Google Scholar
  24. Chang, C. K., Timkovich, R., and Wu, W. (1986).Biochemistry 25, 8447–8453.Google Scholar
  25. Chaudhry, G. R., and MacGregor, C. H. (1983).J. Bacteriol. 154, 387–394.Google Scholar
  26. Clark, M. A., Tang, Y. J., and Ingraham, J. L. (1989).J. Gen. Microbiol. 135, 2569–2575.Google Scholar
  27. Coyle, C. L., Zumft, W. G., Kroneck, P. M. H., Körner, H., and Jakob, W. (1985).Eur. J. Biochem. 153, 459–467.Google Scholar
  28. Craske, A., and Ferguson, S. J. (1986).Eur. J. Biochem. 158, 429–436.Google Scholar
  29. Duine, J. A., Frank, J., and Verwiel, P. E. J. (1980).Eur. J. Biochem. 108, 187–192.Google Scholar
  30. Ferguson, S. J. (1988).Symp. Soc. Gen. Microbiol. 42, 1–29.Google Scholar
  31. Forget, P. (1971).Eur. J. Biochem. 18, 442–458.Google Scholar
  32. Fox, G. E., Stackenbrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zable, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R. (1980).Science 209, 457–463.Google Scholar
  33. Froud, S. J., and Anthony, C. A. (1984).J. Gen. Microbiol. 130, 2201–2212.Google Scholar
  34. Gerhus, E., Steinrücke, P., and Ludwig, B. (1990).J. Bacteriol. 172, 2392–2400.Google Scholar
  35. Goretski, J., and Hollocher, T. C. (1988).J. Biol. Chem. 263, 2316–2323.Google Scholar
  36. Haltia, T., Finel, M., Harms, N., Nakari, T., Raitio, M., Wikström, M., and Saraste, M. (1989).EMBO J. 8, 3571–3579.Google Scholar
  37. Harms, N., de Vries, G. E., Maurer, K., Veltkamp, E., and Stouthamer, A. H. (1985).J. Bacteriol. 164, 1064–1070.Google Scholar
  38. Heiss, B., Frunzke, K., and Zumft, W. G. (1989).J. Bacteriol. 171, 3288–3297.Google Scholar
  39. Hernandez, D., and Rowe, J. J. (1987).Appl. Environ. Microbiol. 53, 745–750.Google Scholar
  40. Hochstein, L. I., and Tomlinson, G. A. (1900).Annu. Rev. Microbiol. 42, 231–261.Google Scholar
  41. Holm, L., Saraste, M., and Wikström, M. (1987).EMBO J. 6, 2819–2823.Google Scholar
  42. Husain, M., and Davidson, V. L. (1985).J. Biol. Chem. 260, 14626–14629.Google Scholar
  43. Husain, M., and Davidson, V. L. (1986).J. Biol. Chem. 261, 8577–8580.Google Scholar
  44. Itoh, M., Mizukami, S., Matsuura, K., and Satoh, T. (1989).FEBS Lett. 244, 81–84.Google Scholar
  45. Iuchi, S., and Liu, E. C. C. (1987).Proc. Natl. Acad. Sci. 84, 3901–3905.Google Scholar
  46. John, P. (1977).J. Gen. Microbiol. 98, 231–238.Google Scholar
  47. John, P., and Whatley, F. R. (1977).Nature (London)254, 495–498.Google Scholar
  48. Johnson, J. L., and Rajagopolan, K. V. (1982).Proc. Natl. Acad. Sci. USA 79, 6856–6860.Google Scholar
  49. Johnson, M. K., Bennett, D. E., Morningstar, J. E., Adams, M. W. W., and Mortenson, L. E., (1985).J. Biol. Chem. 260, 5456–5463.Google Scholar
  50. Kalman, L. V., and Gunsalus, R. P. (1989).J. Bacteriol. 171, 3810–3816.Google Scholar
  51. Knobloch, K., Ishaque, M., and Aleem, M. I. H. (1971).Arch. Microbiol. 76, 114–125.Google Scholar
  52. Kucera, I. (1989).FEBS Lett. 249, 56–58.Google Scholar
  53. Kucera, I., and Dadak, V. (1983).Biochem. Biophys. Res. Commun. 117, 252–258.Google Scholar
  54. Kucera, I., Dadak, V., and Dobry, T. (1983a).Eur. J. Biochem. 130, 359–364.Google Scholar
  55. Kucera, I., Laucik, J., and Dadak, V. (1983b).Eur. J. Biochem. 136, 135–140.Google Scholar
  56. Kucera, I., Karlovsky, P., and Dadak, V. (1981).FEMS Microbiol. Lett. 12, 391–394.Google Scholar
  57. Kucera, I., Krivankova, L., and Dadak, V. (1984).Biochim. Biophys. Acta 765, 43–47.Google Scholar
  58. Kucera, I., Matyasek, R., and Dadak, V. (1986).Biochim. Biophys. Acta 848, 1–7.Google Scholar
  59. Kucera, I., Lampardova, L., and Dadak, V. (1987).Biochim. Biophys. Acta 894, 120–126.Google Scholar
  60. Lam, Y., and Nicholas, D. J. D. (1969).Biochim. Biophys. Acta 172, 450–461.Google Scholar
  61. Lawford, H. G., Cox, J. C., Garland, P. B., and Haddock, B. A. (1976).FEBS Lett. 64, 369–374.Google Scholar
  62. Lee, H. S., Hancock, R. E. W., and Ingraham, J. L. (1989).J. Bacteriol. 171, 2096–2100.Google Scholar
  63. Li, S. F. and De Moss, J. A. (1988).J. Biol. Chem. 263, 13700–13705.Google Scholar
  64. McEwan, A. G., Greenfield, A. J., Wetzstein, H. G., Jackson, J. B., and Ferguson, S. J. (1985).J. Bacteriol. 164, 823–830.Google Scholar
  65. Meijer, E. M., van Verseveld, H. W., van der Beek, E. G., and Stouthamer, A. H. (1977a).Arch. Microbiol. 112, 25–34.Google Scholar
  66. Meijer, E. M., Wever, R., and Stouthamer, A. H. (1977b).Eur. J. Biochem. 81, 267–275.Google Scholar
  67. Meijer, E. M., van der Zwaan, J. W., and Stouthamer, A. H. (1979).FEMS Microbiol. Lett. 5, 369–372.Google Scholar
  68. Michalski, W. P., Hein, D. H., and Nicholas, D. J. D. (1986).Biochim. Biophys. Acta 872, 50–60.Google Scholar
  69. Mokkele, K., Tang, Y. J., Clark, M. A., and Ingraham, J. L. (1987).J. Bacteriol. 169, 5721–5726.Google Scholar
  70. Noji, S., Nohno, T., Saito, T., and Taniguchi, S. (1989).FEBS Lett. 252, 139–143.Google Scholar
  71. Page, M. D., and Ferguson, S. J. (1989).Mol. Microbiol. 3, 653–661.Google Scholar
  72. Parsonage, D., Greenfield, A. J., and Ferguson, S. J. (1985).Biochim. Biophys. Acta 807, 81–95.Google Scholar
  73. Parsonage, D., Greenfield, A. J., and Ferguson, S. J. (1986).Arch. Microbiol. 145, 191–196.Google Scholar
  74. Poole, R. K. (1988). InBacterial Energy Transduction, (Anthony, C. A., ed.), Academic Press, London, pp. 231–291.Google Scholar
  75. Porte, F., and Vignais, P. M. (1980).Arch. Microbiol. 127, 1–10.Google Scholar
  76. Puustinen, A., Finel, M., Virkki, M., and Wikström, M. (1989).FEBS Lett. 249, 163–167.Google Scholar
  77. Robertson, L. A., and Kuenen, J. G. (1990).Antonie van Leeuwenhoek,57, 139–152.Google Scholar
  78. Sapshead, L. M., and Wimpenny, J. W. (1972).Biochim. Biophys. Acta 267, 388–397.Google Scholar
  79. Scott, R. A., Zumft, W. G., Coyle, C. L., and Dooley, D. M. (1989).Proc. Natl. Acad. Sci. USA 86, 4082–4086.Google Scholar
  80. Shaw, D. J., and Guest, J. R. (1982).Nucleic Acids Res. 10, 6119–6130.Google Scholar
  81. Shaw, D. J., Rice, D. W., and Guest, J. R. (1983).J. Mol. Biol. 166, 241–247.Google Scholar
  82. Shearer, G., and Kohl, D. H. (1988).J. Biol. Chem. 263, 13231–13245.Google Scholar
  83. Silvestrini, M. C., Galeotti, C. L., Gervais, M., Schinina, E., Barra, D., Bossa, F., and Brunori, M. (1989)FEBS Lett. 254, 33–38.Google Scholar
  84. Snyder, S. W., and Hollocher, T. C. (1987).J. Biol. Chem. 262, 6515–6525.Google Scholar
  85. Spiro, S., Roberts, R. E., and Guest, J. R. (1989).Mol. Microbiol. 3, 601–608.Google Scholar
  86. Steinrücke, P., Steffens, G. C. M., Panskus, G., Buse, G., and Ludwig, B. (1987).Eur. J. Biochem. 167, 431–439.Google Scholar
  87. Stewart, V. (1988).Microbiol. Rev. 52, 190–232.Google Scholar
  88. Stewart, V., and Parales, J. (1988).J. Bacteriol. 170, 1589–1597.Google Scholar
  89. Stock, J. B., Ninfa, A. J., and Stock, A. M. (1989).Microbiol. Rev. 53, 450–490.Google Scholar
  90. Stouthamer, A. H. (1976).Adv. Microbiol. Physiol. 14, 315–375.Google Scholar
  91. Stouthamer, A. H., Boogerd, F. C. and van Verseveld, H. W. (1982).Antonie van Leeuwenhoek 48, 545–553.Google Scholar
  92. Stouthamer, A. H. (1988a). InBiology of Anaerobic Microorganisms, (Zehnder, A. J. B., ed.), Wiley, New York, pp. 245–303.Google Scholar
  93. Stouthamer, A. H. (1988b). InHandbook on Anaerobic Fermentations, (Erickson, L. E., and Fung, D. Y.-C., eds.), Marcel Dekker, New York, pp. 345–437.Google Scholar
  94. Timkovich, R., Dhesi, R., Martinkus, K. J., Robinson, M. K., and Rea, T. M. (1982).Arch. Biochem. Biophys. 215, 47–58.Google Scholar
  95. Trageser, M., and Unden, G. (1989).Mol. Microbiol. 3, 593–599.Google Scholar
  96. Van Spanning, R. J. M., Wansell, C., Harms, N., Oltmann, L. F. and Stouthamer, A. H. (1990).J. Bacteriol. 172, 986–996.Google Scholar
  97. Van Verseveld, H. W., and Bosma, G. (1987).Microbiol. Sci. 4, 329–333.Google Scholar
  98. Van Verseveld, H. W., and Stouthamer, A. H. (1978a).Arch. Microbiol. 118, 13–20.Google Scholar
  99. Van Verseveld, H. W., and Stouthamer, A. H. (1978b).Arch. Microbiol. 118, 21–26.Google Scholar
  100. Van Verseveld, H. W., and Stouthamer, A. H. (1991). The genusParacoccus. InThe Prokaryotes, 2nd edn. (Balows, A., Trüper, H. G., Dworkin, M., Harder, W., and Schleifer, K. H., eds.), Springer-Verlag, New York, in press.Google Scholar
  101. Van Verseveld, H. W., Boon, J. P., and Stouthamer, A. H. (1979).Arch. Microbiol. 121, 213–223.Google Scholar
  102. Van Verseveld, H. W., Krab, K., and Stouthamer, A. H. (1981).Biochim. Biophys. Acta 635, 525–534.Google Scholar
  103. Van Verseveld, H. W., Braster, M., Boogerd, F. C., Chance, B., and Stouthamer, A. H. (1983).Arch. Microbiol. 135, 225–236.Google Scholar
  104. Viebrock, A., and Zumft, W. G. (1988).J. Bacteriol. 170, 4658–4668.Google Scholar
  105. Vignais, P. M., Henry, M. F., Sim, E., and Kell, D. B. (1981).Curr. Top. Bioenerg. 12, 115–196.Google Scholar
  106. Weeg-Aerssens, E., Tiedje, J. M., and Averill, B. A. (1988).J. Am. Chem. Soc. 110, 6851–6856.Google Scholar
  107. Willison, J. C. and John, P. (1979).J. Gen. Microbiol. 115, 443–450.Google Scholar
  108. Willison, J. C., Haddock, B. A., and Boxer, D. A. (1981).FEMS Microbiol. Lett. 10, 249–253.Google Scholar
  109. Zumft, W. (1991). InThe Prokaryotes, 2nd edn. (Balows, A., Trüper, H. G., Dworkin, M., Harder, W., and Schleifer, K. H., eds.), Springer-Verlag, New York, in press.Google Scholar
  110. Zumft, W. G., and Kroneck, P. M. H. (1990). InDenitrification in Soil and Sediments (Sørensen, J., and Revsbech, N. P., eds.), Plenum Press, New York, in press.Google Scholar
  111. Zumft, W. G., Döhler, K., and Körner, H. (1985).J. Bacteriol. 163, 918–924.Google Scholar
  112. Zumft, W. G., Döhler, K., Körner, H., Löchelt, S., Viebrock, A., and Frunzke, K. (1988a).Arch. Microbiol. 149, 492–498.Google Scholar
  113. Zumft, W., Viebrock, A., and Körner, H. (1988b).Symp. Soc. Gen. Microbiol. 42, 245–279.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. H. Stouthamer
    • 1
  1. 1.Department of Microbiology, Faculty of BiologyVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations