Journal of Bioenergetics and Biomembranes

, Volume 21, Issue 1, pp 115–135 | Cite as

The adaptation of biological membranes to temperature and pressure: Fish from the deep and cold

  • Andrew R. Cossins
  • Alister G. Macdonald
Mini-Review

Abstract

The homoeostatic regulation of bilayer order is a property of functional importance. Arguably, it is best studied in those organisms which experience and must overcome disturbances in bilayer order which may be imposed by variations in temperature of hydrostatic pressure. This article reviews our recent work on the adaptations of order in brain membranes of those fish which acclimate to seasonal changes in temperature or which have evolved in extreme thermal or abyssal habitats. The effects of temperature and pressure upon hydrocarbon order and phase state are reviewed to indicate the magnitude of the disturbances experienced by animals in their environments over the seasonal or evolutionary timescale. Acclimation of fish to altered temperature leads to a partial correction of order, while comparison of fish from extreme cold environments with those from temperate or tropical waters reveals a more complete adaptation. Fish from the deep sea also display adaptations of bilayer order which largely overcome the ordering effects of pressure.

Key Words

Membrane fluidity fish membranes homeoviscous adaptation temperature hydrostatic pressure acclimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate, K. R., and Glomset, J. R. (1986).J. Lipid Res. 27, 658–680.Google Scholar
  2. Bell, M. W., Henderson, R. J., and Sargent, J. R. (1986).Comp. Biochem. Physiol. B 83, 711–719.Google Scholar
  3. Braganza, L. F., and Worcester, D. L. (1986).Biochemistry,25, 2591–2596.Google Scholar
  4. Brenner, R. R. (1984).Prog. Lipid Res. 23, 69–96.Google Scholar
  5. Chong, P. L.-G. (1988).Biochemistry 27, 399–404.Google Scholar
  6. Chong, P. L.-G., and Cossins, A. R. (1983).Biochemistry 22, 409–414.Google Scholar
  7. Chong, P. L.-G., and Weber, G. (1983).Biochemistry 22, 5544–5550.Google Scholar
  8. Chong, P. L.-G., Fortes, P. A. G., and Jameson, D. M. (1985).J. Biol. Chem. 260, 14,484–14,490.Google Scholar
  9. Cossins, A. R. (1977).Biochim. Biophys. Acta 470, 395–411.Google Scholar
  10. Cossins, A. R. (1983). InCellular Acclimation to Environmental Change (Cossins, A. R., and Sheterline, P. S., eds.). Cambridge University Press, Cambridge, pp. 3–22.Google Scholar
  11. Cossins, A. R., and Bowler, K. (1987).Temperature Biology of Animals, Chapman Hall, London.Google Scholar
  12. Cossins, A. R., and Macdonald, A. G. (1982).J. Physiol. 332, 83P.Google Scholar
  13. Cossins, A. R., and Macdonald, A. G. (1984).Biochim. Biophys. Acta 776, 144–150.Google Scholar
  14. Cossins, A. R., and Macdonald, A. G. (1986).Biochim. Biophys. Acta 860, 325–335.Google Scholar
  15. Cossins, A. R., and Prosser, C. L. (1982).Biochim. Biophys. Acta 687, 303–309.Google Scholar
  16. Cossins, A. R., and Sinensky, M. (1984). InPhysiology of Membrane Fluidity (Shinitzky, M., ed.), Vol. 2, CRC Press, Boca Raton, Florida, pp. 1–20.Google Scholar
  17. Cossins, A. R., Christiansen, J., and Prosser, C. L. (1978).Biochim. Biophys. Acta 511, 442–454.Google Scholar
  18. Cossins, A. R., Kent, J., and Prosser, C. L. (1980).Biochim. Biophys. Acta 599, 341–358.Google Scholar
  19. Dale, R. E., Chen, L. A., and Brand, L. (1977).J. Biol. Chem. 252, 7500–7510.Google Scholar
  20. DeLong, E. F., and Yayanos, A. A. (1985).Science 228, 1101–1103.Google Scholar
  21. DeLong, E. F., and Yayanos, A. A. (1987).Appl. Environ. Microbiol. 53, 527–532.Google Scholar
  22. DeSmedt, H., Borghgraef, R., Ceuterick, F., and Heremans, K. (1979).Biochim. Biophys. Acta 556, 479–489.Google Scholar
  23. Eisinger, T., and Scarlatta, S. F. (1987).Biophys. Chem. 28, 273–288.Google Scholar
  24. Gibson, J. S., Ellory, J. C., and Cossins, A. R. (1985).J. Exp. Biol. 114, 355–364.Google Scholar
  25. Grassle, J. F. (1985).Science 229, 713–717.Google Scholar
  26. Harper, A. A., Macdonald, A. G., Wardle, C. S., and Pennec, J.-P. (1987).Comp. Biochem. Biophys. A 88, 647–653.Google Scholar
  27. Hazel, J. R. (1972).Comp. Biochem. Physiol. B 43, 863–882.Google Scholar
  28. Hazel, J. R. (1984).Am. J. Physiol. 246, R460–470.Google Scholar
  29. Hazel, J. R., and Prosser, C. L. (1974).Physiol. Rev. 54, 620–677.Google Scholar
  30. Hazel, J. R., and Shuster, V. L. (1979).J. Exp. Zool. 195, 425–439.Google Scholar
  31. Heyn, M. P. (1979).FEBS Lett. 108, 359–364.Google Scholar
  32. Hochachka, P. W., and Somero, G. N. (1984).Biochemical Adaptation, Princeton University Press, Princeton.Google Scholar
  33. Jahnig, F. (1979).Proc. Natl. Acad. Sci. USA 76, 6361–6365.Google Scholar
  34. Jannasch, H. W. (1985).Proc. R. Soc. Lond. B 225, 277–297.Google Scholar
  35. Kinosita, K., Kawato, S., and Ikegami, A. (1977).Biochemistry 16, 2319–2324.Google Scholar
  36. Lee, A. G. (1983). InMembrane Fluidity in Biology (Aloia, R. C., ed.), Vol. 2, Academic Press, New York, pp. 43–89.Google Scholar
  37. Lenaz, G., and Castelli, G. P. (1985). InStructure and Properties of Cell Membranes (Benga, G., ed.), Vol. 1, CRC Press, Boca Raton, Florida, pp. 93–136.Google Scholar
  38. Littleton, J. M. (1983). InCellular Acclimation to Environmental Change (Cossins, A. R., and Sheterline, P. S., eds.), Cambridge University Press, Cambridge, pp. 145–160.Google Scholar
  39. Liu, N., and Kay, R. L. (1977).Biochemistry 16, 3484–3486.Google Scholar
  40. Macdonald, A. G. (1984).Phil. Trans. R. Soc. Lond. 304, 47–68.Google Scholar
  41. Macdonald, A. G. (1987). InCurrent Perspectives in High Pressure Biology (Jannasch, H. W., Marquis, R. E., and Zimmerman, A. M., eds.), Academic Press, London, pp. 207–223.Google Scholar
  42. Macdonald, A. G., and Cossins, A. R. (1985).Symp. Soc. Exp. Biol. 39, 301–322.Google Scholar
  43. Macdonald, A. G., Gilchrist, I., and Wardle, C. S. (1987).Comp. Biochem. Physiol. A 88, 543–548.Google Scholar
  44. Macdonald, A. G., Wahle, K. W. J., Cossins, A. R., and Behan, M. K. (1988).Biochim. Biophys. Acta 938, 231–242.Google Scholar
  45. McElhaney, R. N. (1984). InBiomembranes: Membrane Fluidity (Kates, M., and Manson, L. A., eds.), Vol. 12, Plenum Press, New York, pp. 249–278.Google Scholar
  46. McMurchie, E. J., Abeywardena, M. Y., Charnock, J. S., and Gibson, R. A. (1983).Biochim. Biophys. Acta 734, 114–124.Google Scholar
  47. Melchior, D. L., and Steim, J. M. (1976).Annu. Rev. Biophys. Bioeng. 5, 205–238.Google Scholar
  48. Mulders, F., Van Langen, H., van Ginkel, G., and Levine, Y. K. (1986).Biochim. Biophys. Acta 859, 208–218.Google Scholar
  49. Paladini, A. (1980). PhD thesis, University of Illinois, Urbana, Illinois.Google Scholar
  50. Pennec, J.-P., Wardle, C. S., Harper, A. A., and Macdonald, A. G. (1987).Comp. Biochem. Physiol. A 89, 215–218.Google Scholar
  51. Quinn, P. J. (1981).Prog. Biophys. Mol. Biol. 38, 1–104.Google Scholar
  52. Raison, J. K., Augee, M. L., and Aloia, R. C. (1988).Am. J. Physiol. 254, E378–383.Google Scholar
  53. Raynard, R. (1988). InTemperature and Animal Cells (Bowler, K., and Fuller, B., eds.), Company of Biologists, London, pp. 455–456.Google Scholar
  54. Sebert, P., Barthelemy, L., and Caroff, J. (1986).Comp. Biochem. Physiol. C 84, 155–157.Google Scholar
  55. Seelig, J., and Seelig, A. (1980).Q. Rev. Biophys. 13, 19–61.Google Scholar
  56. Shelton, C., Macdonald, A. G., Pequeux, A., and Gilchrist, I. (1985).J. Comp. Physiol. 155, 629–633.Google Scholar
  57. Shinitzky, M. (1984). InPhysiology of Membrane Fluidity (Shinitzky, M., ed.), Vol. 1, CRC Press, Boca Raton, Florida, pp. 1–51.Google Scholar
  58. Shinitzky, M., and Barenholz, Y. (1978).Biochim. Biophys. Acta 515, 367–394.Google Scholar
  59. Shinitzky, M., and Inbar, M. (1976).Biochim. Biophys. Acta 433, 133–149.Google Scholar
  60. Shinitzky, M., and Yuli, I. (1982).Chem. Phys. Lipids 30, 261–282.Google Scholar
  61. Sidell, B. (1983). InCellular Acclimatisation to Environmental Change (Cossins, A. R., and Sheterline, P. S., eds.), Cambridge University Press, Cambridge, pp. 103–120.Google Scholar
  62. Sidell, B. D., and Hazel, J. R. (1987).J. Exp. Biol. 129, 191–203.Google Scholar
  63. Sinensky, M. (1974).proc. Natl. Acad. Sci. USA 71, 522–525.Google Scholar
  64. Sinensky, M., Pinkerton, F., Sutherland, E., and Simon, F. R. (1979).Proc. Natl. Acad. Sci. USA 76, 4893–4897.Google Scholar
  65. Smith, M. W., and Ellory, J. C. (1971).Comp. Biochem. Physiol. A 39, 209–218.Google Scholar
  66. Somero, G. N., Siebenaller, J. F., and Hochachka, P. W. (1983). InThe Sea (Rowe, G. T., ed.), Vol. 12, Wiley Interscience, New York, pp. 261–330.Google Scholar
  67. Stubbs, C. D., and Smith, A. D. (1984).Biochim. Biophys. Acta 779, 89–137.Google Scholar
  68. Thompson, G. A., Jr. (1980). InMembrane Fluidity: Biophysical Techniques and Cellular Regulation (Kates, M., and Kuksis, A. A., eds.), Humana Press, Clifton, New Jersey, pp. 381–397.Google Scholar
  69. Vallentyne, J. R. (1963).Ann. N.Y. Acad. Sci. 108, 342–352.Google Scholar
  70. Van Blitterswijk, W. J., and van Hoeven, R. P., and van der Meer, B. W. (1981).Biochim. Biophys. Acta 644, 323–332.Google Scholar
  71. Van der Meer, W. (1984). InPhysiology of Membrane Fluidity (Shinitzky, M., ed.), Vol. 1, CRC Press, Boca Raton, Florida, pp. 53–72.Google Scholar
  72. Van der Meer, W., Pottel, H., Herreman, W., Ameloot, M., Hendrickx, H., and Schroder, H. (1984).Biophys. J. 46, 515–523.Google Scholar
  73. Wirsen, C. O., Jannasch, H. W., Wakeham, S. G., and Cannel, E. A. (1987).Curr. Microbiol. 14, 319–322.Google Scholar
  74. Wodtke, E. (1981).Biochim. Biophys. Acta 640, 710–720.Google Scholar
  75. Wong, T. T., Siminovitch, D. J., and Mantsch, H. H. (1988).Biochim. Biophys. Acta 947, 139–171.Google Scholar
  76. Wrigglesworth, J. M. (1985). InStructure and Properties of Cell Membranes (Benga, G., ed.), Vol. 1, CRC Press, Boca Raton, Florida, pp. 137–158.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Andrew R. Cossins
    • 1
  • Alister G. Macdonald
    • 2
  1. 1.Department of Environmental and Evolutionary BiologyUniversity of LiverpoolLiverpoolEngland
  2. 2.Department of Physiology, Marischal CollegeUniversity of AberdeenAberdeenScotland

Personalised recommendations