Skip to main content
Log in

Low-temperature effects on cyanobacterial membranes

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The effect of change in ambient temperature on fatty acid unsaturation has been studied in the cyanobacteriumAnabaena variabilis. When cells isothermally grown at 22°C are compared with those grown at 38°C, the relative content of oleic acid decreases and that of linolenic acid increases in all of the lipid classes. After a temperature shift from 38 to 22°C, palmitic acid is rapidly desaturated in monogalactocyldiacylglycerol, but in no other lipids, and oleic acid is slowly desaturated in most lipid classes. When cells ofAnacystis nidulans are exposed to low temperature such as 0°C, they lose physiological activities and finally die. This low-temperature damage is initiated by the phase transition of lipids in the plasma membrane. The phase transition of thylakoid membrane that occurs at intermediate temperature produces loss of activity related to photosynthesis. This is, however, recovered when the cells are rewarmed to growth temperature. A model for the mechanism of the low-temperature damage in the cyanobacterial cells is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brand, J. J. (1977).Plant Physiol. 59, 970–973.

    Google Scholar 

  • Brand, J. J. (1979).Arch. Biochem. Biophys. 193, 385–391.

    Google Scholar 

  • Brand, J. J., Kirchanski, S. J., and Ramirez-Mitchell, R. (1979).Planta 145, 63–68.

    Google Scholar 

  • Chapman, D., Urbina, J., and Keough, K. M. (1974).J. Biol. Chem. 249, 2512–2521.

    Google Scholar 

  • Fork, D. C., Murata, N., and Sato, N. (1979).Plant Physiol. 63, 524–530.

    Google Scholar 

  • Forrest, H. S., Van Baalen, C., and Myers, J. (1957).Science 125, 699–700.

    Google Scholar 

  • Gantt, E., and Conti, S. F. (1969).J. Bacteriol. 97, 1486–1493.

    Google Scholar 

  • Gambos, Z., and Vigh, L. (1986).Plant Physiol. 80, 415–419.

    Google Scholar 

  • Jansz, E. R., and MacLean, F. I. (1973).Can. J. Microbiol. 19, 381–387.

    Google Scholar 

  • Jürgens, U. J., and Weckesser, J. (1985).J. Bacteriol. 164, 384–389.

    Google Scholar 

  • Knoll, W., Baumann, J., Korpiun, P., and Theilen, U. (1980).Biochem. Biophys. Res. Commun. 96, 968–974.

    Google Scholar 

  • Lee, A. G. (1975).Biochemistry 14, 4397–4402.

    Google Scholar 

  • Lem, N. W., and Stumpf, P. K. (1984).Plant Physiol. 74, 134–138.

    Google Scholar 

  • Mannock, D. A., Brain, A. P. R., and Williams, W. P. (1985a).Biochim. Biophys. Acta 817, 289–298.

    Google Scholar 

  • Mannock, D. A., Brain, A. P. R., and Williams, W. P. (1985b).Biochim. Biophys. Acta 821, 153–164.

    Google Scholar 

  • Murata, N., and Fork, D. C. (1975).Plant Physiol. 56, 791–796.

    Google Scholar 

  • Murata, N., and Nishida, I. (1987). InBiochemistry of Plants Vol. 9, (Stumpf, p. K., ed.), Academic Press, New York, pp. 315–347.

    Google Scholar 

  • Murata, N., and Ono, T. (1981). InPhotosynthesis Vol. 6, (Akoyunoglou, G., ed.), Balaban International Science Services, Philadelphia, pp. 473–481.

    Google Scholar 

  • Murata, N., Troughton, J. H., and Fork, D. C. (1975).Plant Physiol. 56, 508–517.

    Google Scholar 

  • Murata, N., Ono, T., and Sato, N. (1979). InLow Temperature Stress in Crop Plants: the Role of the Membrane (Lyons, J. M., Graham, D., and Raison, J. K., eds.), Academic Press, New York, pp. 337–345.

    Google Scholar 

  • Murata, N., Sato, N., Omata, T., and Kuwabara, T. (1981).Plant Cell Physiol. 22, 855–866.

    Google Scholar 

  • Murata, N., Wada, H., Omata, T., and Ono, T. (1983). InEffects of Stress on Photosynthesis (Marcelle, R., Clijsters, H., and van Poucke, M., eds.), Martinus Nijhoff/Dr W. Junk, The Hague, pp. 193–199.

    Google Scholar 

  • Murata, N., Wada, H., and Hirasawa, R. (1984).Plant Cell Physiol. 25, 1027–1032.

    Google Scholar 

  • Omata, T., and Murata, N. (1983).Plant Cell Physiol. 24, 1101–1112.

    Google Scholar 

  • Omata, T., and Murata, N. (1984a).Arch. Microbiol. 139, 113–116.

    Google Scholar 

  • Omata, T., and Murata, N. (1984b).Biochim. Biophys. Acta 766, 395–402.

    Google Scholar 

  • Omata, T., and Murata, N. (1985).Biochim. Biophys. Acta 810, 354–361.

    Google Scholar 

  • Ono, T., and Murata, N. (1977).Biochim. Biophys. Acta 460, 220–229.

    Google Scholar 

  • Ono, T., and Murata, N. (1979).Biochim. Biophys. Acta 545, 69–76.

    Google Scholar 

  • Ono, T., and Murata, N. (1981a).Plant Physiol. 67, 176–181.

    Google Scholar 

  • Ono, T., and Murata, N. (1981b).Plant Physiol. 67, 182–187.

    Google Scholar 

  • Ono, T., and Murata, N. (1982).Plant Physiol. 69, 125–129.

    Google Scholar 

  • Rao, V. S. K., Brand, J. J., and Myers, J. (1977).Plant Physiol. 59, 965–969.

    Google Scholar 

  • Resch, C. M., and Gibson, J. (1983).J. Bacteriol. 155, 345–350.

    Google Scholar 

  • Rivas, E., and Luzzati, V. (1969).J. Mol. Biol. 41, 261–275.

    Google Scholar 

  • Sato, N., and Murata, N. (1980a).Biochim. Biophys. Acta 619, 353–366.

    Google Scholar 

  • Sato, N., and Murata, N. (1980b). InBiogenesis and Function of Plant Lipids (Mazliak, P., Benveniste, P., Costes, C, and Douce, R., eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 207–210.

    Google Scholar 

  • Sato, N., and Murata, N. (1981).Plant Cell Physiol. 22, 1043–1050.

    Google Scholar 

  • Sato, N., and Murata, N. (1982a).Biochim. Biophys. Acta 710, 271–278.

    Google Scholar 

  • Sato, N., and Murata, N. (1982b).Biochim. Biophys. Acta 710, 279–289.

    Google Scholar 

  • Sato, N., and Murata, N. (1982c).Plant Cell Physiol. 23, 1115–1120.

    Google Scholar 

  • Sato, N., Murata, N., Miura, Y., and Ueta, N. (1979).Biochim. Biophys. Acta 572, 19–28.

    Google Scholar 

  • Sato, N., Seyama, Y., and Murata, N. (1986).Plant Cell Physiol. 27, 819–835.

    Google Scholar 

  • Stapleton, S. R., and Jaworski, J. G. (1984).Biochim. Biophys. Acta 794, 249–255.

    Google Scholar 

  • Tsukamoto, Y., Ueki, T., Mitsui, T., Ono, T., and Murata, N. (1980).Biochim. Biophys. Acta 602, 673–675.

    Google Scholar 

  • Vigh, L., and Joó, F. (1983).FEBS Lett. 162, 423–427.

    Google Scholar 

  • Vigh, L., Gombos, Z., and Joó, F. (1985).FEBS Lett. 191, 200–204.

    Google Scholar 

  • Wada, H., Hirasawa, R., Omata, T., and Murata, N. (1984).Plant Cell Physiol. 25, 907–911.

    Google Scholar 

  • Yamamoto, H. Y., and Bangham, A. D. (1978).Biochim. Biophys. Acta 507, 119–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, N. Low-temperature effects on cyanobacterial membranes. J Bioenerg Biomembr 21, 61–75 (1989). https://doi.org/10.1007/BF00762212

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762212

Key Words

Navigation