Skip to main content
Log in

ATP formation onset lag and post-illumination phosphorylation initiated with single-turnover flashes. III. Characterization of the ATP formation onset lag and post-illumination phosphorylation for thylakoids exhibiting localized or bulk-phase delocalized energy coupling

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

When 100 mM KCl replaced sucrose in a chloroplast thylakoid stock suspension buffer, the membranes were converted from a localized proton gradient to a delocalized proton gradient energy coupling mode. The KCl-suspended but not the sucrose-suspended thylakoids showed pyridine-dependent extensions of the ATP onset lag and pyridine effects on post-illumination phosphorylation. The ATP formation assays were performed in a medium of identical composition, using about a 200-fold dilution of the stock thylakoid suspension; hence the different responses were due to the pretreatment, and not the conditions present in the phosphorylation assay. Such permeable buffer effects on ATP formation provide a clear indicator of delocalized proton gradients as the driving force for phosphorylation. The pyridine-dependent increases in the onset lags (and effects on post-illumination phosphorylation) were not due to different ionic conductivities of the membranes (measured by the 515 nm electrochromic absorption change), H+/e ratios, or electron transport capacities for the two thylakoid preparations. Thylakoid volumes and [14C]pyridine equilibration were similar with both preparations. The KCl-induced shift toward a bulk-phase delocalized energy coupling mode was reversed when the thylakoids were placed back in a low-salt medium.

Proton uptake, at the ATP-formation energization threshold flash number, was much larger in the KCl-treated thylakoids and they also had a longer ATP formation onset lag, when no pyridine was present. These results are consistent with the salt treatment exposing additional endogenous buffering groups for interaction with the proton gradient. The concomitant appearance of the pyridine buffer effects implies that the additional endogenous buffering groups must be located on proteins directly exposed in the aqueous lumen phase.

Kinetic analysis of the decay of the post-illumination phosphorylation in the two thylakoid preparations showed different apparent first-order rate constants, consistent with there being two different compartments contributing to the proton reservoirs that energize ATP formation. We suggest that the two compartments are a membrane-phase localized compartment operative in the sucrose-treated thylakoids and the bulk lumen phase into which protons readily equilibrate in the KCl-treated thylakoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avron, M. (1971). InProc. IInd Intl. Cong. on Photosynthesis (Forti, G., Avron, M., and Melandri, A., eds.), Dr Junk, The Hague, pp. 861–871.

    Google Scholar 

  • Beard, W. A., and Dilley, R. A. (1986a).FEBS Lett. 201, 57–62.

    Google Scholar 

  • Beard, W. A., and Dilley, R. A. (1986b). InProc. VIIth Intl. Congress on Photosynthesis (Biggins, J., ed.), Martinus Nijhoff/Dr. Junk Publishers, The Hague, Vol. 3, pp. 165–168.

    Google Scholar 

  • Beard, W. A., and Dilley, R. A. (1988).J. Bioenerg. Biomembr. 20, 85–106.

    Google Scholar 

  • Beard, W. A., Chiang, G., and Dilley, R. A. (1988).J. Bioenerg. Biomembr. 20, 107–128.

    Google Scholar 

  • Cramer, W. A., Widger, W. R., Black, M. T., and Girvin, M. E. (1987). InElectron Transfer Mechanisms and Oxygen Evolution (Barber, J., ed.), Elsevier, Amsterdam, in press.

    Google Scholar 

  • Daemani, L. A., Patterson, L. H., and Garrod, J. W. (1978).J. Chromatogr. 155, 337–348.

    Google Scholar 

  • Davenport, J. W., and McCarty, R. E. (1980).Biochim. Biophys. Acta 589, 353–357.

    Google Scholar 

  • Dilley, R. A., and Deamer, D. (1971).Bioenergetics 2, 33–38.

    Google Scholar 

  • Dilley, R. A., Theg, S. M., and Beard, W. A. (1987).Annu. Rev. Plant Physiol. 38, 348–389.

    Google Scholar 

  • Flores, S., Graan, T., and Ort, D. R. (1983).Photobiochem. Photobiophys. 6, 293–304.

    Google Scholar 

  • Galmiche, J. M., and Girault, G. (1982).FEBS Lett. 146, 123–128.

    Google Scholar 

  • Graan, T., and Ort, D. R. (1981).Biochim. Biophys. Acta 637, 447–456.

    Google Scholar 

  • Graan, T., and Ort, D. R. (1984).J. Biol. Chem. 259, 14003–14010.

    Google Scholar 

  • Graan, T., Flores, S., and Ort, D. R. (1981). InEnergy Coupling in Photosynthesis (Selman, B., and Selman-Reimer, S., eds.), Elsevier North-Holland, Amsterdam, pp. 25–34.

    Google Scholar 

  • Graan, T., Ort, D. R., and Prince, R. C. (1985).Anal. Biochem. 144, 193–198.

    Google Scholar 

  • Hangarter, R., and Good, N. E. (1984).Biochemistry 23, 122–130.

    Google Scholar 

  • Hangarter, R., and Ort, D. R. (1985).Eur. J. Biochem. 149, 503–510.

    Google Scholar 

  • Hangarter, R., and Ort, D. R. (1986).Eur. J. Biochem. 158, 7–12.

    Google Scholar 

  • Hangarter, R., Grandoni, P., and Ort, D. R. (1986). InProc. VIIth Intl. Congress on Photosynthesis (Biggins, J., ed.), Martinus Nijhoff/Dr. Junk Publishers, The Hague, Vol. 3, 205–212.

    Google Scholar 

  • Hind, G., and Jagendorf, A. T. (1963).Proc. Nat'l. Acad. Sci. (USA) 49, 715–722.

    Google Scholar 

  • Horner, R. D., and Moudrianakis, E. N. (1986).J. Biol. Chem. 261, 13408–13414.

    Google Scholar 

  • Izawa, S. (1970).Biochim. Biophys. Acta 223, 165–173.

    Google Scholar 

  • Izawa, S., and Hind, G. (1967).Biochim. Biophys. Acta 143, 377–390.

    Google Scholar 

  • Mills, J. D., and Mitchell, P. (1982).FEBS Lett. 144, 63–67.

    Google Scholar 

  • Nalin, C. M., and McCarty, R. E. (1984).J. Biol. Chem. 258, 7275–7280.

    Google Scholar 

  • Nelson, N., Nelson, H., Naim, Y., and Neumann, J. (1971).Arch. Biochem. Biophys. 145, 263–267.

    Google Scholar 

  • Nishida, K., Tamai, N., and Ryogama, K. (1966).Plant Cell Physiol. 7, 415–428.

    Google Scholar 

  • Ort, D. R. (1978).Eur. J. Biochem. 85, 479–485.

    Google Scholar 

  • Ort, D. R., and Izawa, S. (1973).Plant Physiol. 52, 595–600.

    Google Scholar 

  • Ort, D. R., Dilley, R. A., and Good, N. E. (1976).Biochim. Biophys. Acta 449, 108–124.

    Google Scholar 

  • Packer, L., Siegenthaler, P. A., and Nobel, P. S. (1965).Biochem. Biophys. Res. Commun. 18, 474–477.

    Google Scholar 

  • Schonfeld, M., and Kopeliovitch, B. S. (1985).FEBS Lett. 193, 79–82.

    Google Scholar 

  • Schreiber, U., and Del Valle-Tascon, S. (1983).FEBS Lett. 150, 32–37.

    Google Scholar 

  • Sigalat, C., Haraux, F., de Kouchkovsky, F., Hung, S. P. N., and de Kouchkovsky, Y. (1985).Biochim. Biophys. Acta 809, 403–413.

    Google Scholar 

  • Theg, S. M., and Dilley, R. A. (1986). InProc. VIIth Intl. Congress on Photosynthesis (Biggins, J., ed.), Martinus Nijhoff/Dr. Junk Publishers, The Hague, Vol. 3, pp. 161–164.

    Google Scholar 

  • Vinkler, C., Avron, M., and Boyer, P. D. (1980).J. Biol. Chem. 255, 2263–2266.

    Google Scholar 

  • Whitmarsh, C. J. (1987).Photosynthesis Res., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beard, W.A., Dilley, R.A. ATP formation onset lag and post-illumination phosphorylation initiated with single-turnover flashes. III. Characterization of the ATP formation onset lag and post-illumination phosphorylation for thylakoids exhibiting localized or bulk-phase delocalized energy coupling. J Bioenerg Biomembr 20, 129–154 (1988). https://doi.org/10.1007/BF00762141

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762141

Key Words

Navigation