Skip to main content
Log in

Expression of theunc genes inEscherichia coli

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Theunc (or atp) operon ofEscherichia coli comprises eight genes encoding the known subunits of the proton-translocating ATP synthase (H+-ATPase) plus a ninth gene (uncI) of unknown function. The subunit stoichiometry of the H+-ATPase (α 3β3γ1δ1ε1a1b2c10–15) requires that the respectiveunc genes be expressed at different rates. This review discusses the experimental methods applied to determining how differential synthesis is achieved, and evaluates the results obtained. It has been found that the primary level of control is translational initiation. The translational efficiencies of theunc genes are determined by primary and secondary mRNA structures within their respective translational initiation regions. The respective rates of translation are matched to the subunit requirements of H+-ATPase assembly. Finally, points of uncertainty remain and experimental strategies which will be important in future work are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amzel, M. (1981).J. Bioenerg. Biomembr. 13, 109–121.

    Google Scholar 

  • Brawermann, G. (1987).Cell 48, 5–6.

    Google Scholar 

  • Brusilow, W. S. A., Klionsky, D. J., and Simoni, R. D. (1982).J. Bacteriol. 151, 1363–1371.

    Google Scholar 

  • Brusilow, W. S. A., Porter, A. C. G., and Simoni, R. D. (1983).J. Bacteriol. 155, 1265–1270.

    Google Scholar 

  • Butlin, J. D., Cox, G. B., and Gibson, F. (1971).Biochem. J. 124, 75–81.

    Google Scholar 

  • Cannistraro, V. J., Subbarao, M. N., and Kennell, D. (1986).J. Mol. Biol. 192, 257–274.

    Google Scholar 

  • Cozens, A. L., and Walker, J. E. (1987).J. Mol. Biol. 194, 359–383.

    Google Scholar 

  • Dennis, P. P. (1984).J. Biol. Chem. 259, 3202–3209.

    Google Scholar 

  • Downie, J. A., Gibson, F., and Cox, G. B. (1979).Annu. Rev. Biochem. 48, 103–131.

    Google Scholar 

  • Downie, J. A., Langman, L., Cox, G. B., Yanofsky, C., and Gibson, F. (1980).J. Bacteriol. 143, 8–17.

    Google Scholar 

  • Fillingame, R. H. (1981).Curr. Top. Bioenerg. 11, 35–106.

    Google Scholar 

  • Foster, D. L., and Fillingame, R. H. (1979).J. Biol. Chem. 254, 8230–8236.

    Google Scholar 

  • Foster, D. L., and Fillingame, R. H. (1982).J. Biol. Chem. 257, 2009–2015.

    Google Scholar 

  • Friedl, P., Friedl, C., and Schairer, H. U. (1979).Eur. J. Biochem. 100, 175–180.

    Google Scholar 

  • Futai, M., and Kanazawa, H. (1983).Microbiol. Rev. 47, 285–312.

    Google Scholar 

  • Ganoza, M. C., Marliere, P., Kofoid, E. C., and Louis, B. G. (1985).Proc. Natl. Acad. Sci. USA 82, 4587–4591.

    Google Scholar 

  • Gay, N. J. (1984).J. Bacteriol. 158, 820–825.

    Google Scholar 

  • Gay, N. J., and Walker, J. E. (1981).Nucleic Acids Res. 9, 3919–3926.

    Google Scholar 

  • Gibson, F. (1983).Proc. R. Soc. London Ser. B 215, 1–18.

    Google Scholar 

  • Gibson, F., Downie, J. A., Cox, J. B., and Radik, J. (1978).J. Bacteriol. 134, 728–736.

    Google Scholar 

  • Goelz, S., and Steitz, J. A. (1977).J. Biol. Chem. 252, 5177–5179.

    Google Scholar 

  • Gold, L., Pribnow, D., Schneider, T., Shinedling, S., Singer, B. S., and Stormo, G. (1981).Annu. Rev. Microbiol. 35, 365–403.

    Google Scholar 

  • Grantham, R., Gautier, D., Gouy, M., Jacobzone, M., and Mercier, R. (1981).Nucleic Acids Res. 9, 43–74.

    Google Scholar 

  • Grosjean, H., and Fiers, W. (1982).Gene 18, 199–209.

    Google Scholar 

  • Hansen, F. G., Nielsen, J., Riise, E., and von Meyenburg, K. (1981).Mol. Gen. Genet. 183, 463–472.

    Google Scholar 

  • Holm, L. (1986).Nucleic Acids Res. 14, 3075–3087.

    Google Scholar 

  • Ikemura, T. (1981a).J. Mol. Biol. 146, 1–21.

    Google Scholar 

  • Ikemura, T. (1981b).J. Mol. Biol. 151, 389–409.

    Google Scholar 

  • Jay, E., Seth, A. K., Rommens, J., Sood, A., and Jay, G. (1982).Nucleic Acids Res. 10, 6319–6329.

    Google Scholar 

  • Jones, H. M., Brajkovich, C. M., and Gunsalus, R. P. (1983).J. Bacteriol. 155, 1279–1287.

    Google Scholar 

  • Kanazawa, H., Kiyasu, T., Noumi, T. and Futai, M. (1984).J. Bacteriol. 158, 300–306.

    Google Scholar 

  • Kennell, D., and Riezman, H. (1977).J. Mol. Biol. 114, 1–21.

    Google Scholar 

  • Klionsky, D. J., Skalnik, D. G., and Simoni, R. D. (1986).J. Biol. Chem. 261, 8096–8099.

    Google Scholar 

  • Kozak, M. (1983).Microbiol. Rev. 47, 1–45.

    Google Scholar 

  • Kurland, C. G. (1987).Trends Biochem. Sci. 12, 126–128.

    Google Scholar 

  • Lindahl, L., and Zengel, J. M. (1982).Adv. Genet. 21, 53–121.

    Google Scholar 

  • Little, S., Campbell, K., Hyde, S., and Robinson, M. K. (1986).Abstracts Microbe 86, P.B, 21–10.

    Google Scholar 

  • Lünsdorf, H., Ehrig, K., Friedl, P., and Schairer, H. U. (1984).J. Mol. Biol. 173, 131–136.

    Google Scholar 

  • Maaloe, O. (1979). InBiological Regulation and Development (Goldberger, R. F., ed.), Plenum Press, New York, pp. 487–542.

    Google Scholar 

  • Mahajna, J., Oppenheim, A. B., Rattray, A., and Gottesman, M. (1986).J. Bacteriol. 165, 167–174.

    Google Scholar 

  • McCarthy, J. E. G., Schairer, H. U., and Sebald, W. (1984). EBEC Rep. 3, pp. 587, 588.

  • McCarthy, J. E. G., Schairer, H. U., and Sebald, W. (1985).EMBO J. 4, 519–526.

    Google Scholar 

  • McCarthy, J. E. G., Sebald, W., Gross, G., and Lammers, R. (1986).Gene 41, 201–206.

    Google Scholar 

  • Miki, T., Hiraga, S., Nagata, T., and Yura, T. (1978).Proc. Natl. Acad. Sci. USA 75, 5099–5103.

    Google Scholar 

  • Miller, E. S., Karam, J., Dawson, M., Trojanowska, M., Gauss, P., and Gold, L. (1987).J. Mol. Biol. 194, 397–410.

    Google Scholar 

  • Nelson, N. (1981).Curr. Top. Bioenerg. 11, 1–34.

    Google Scholar 

  • Newbury, S. F., Smith, N. H., Robinson, E. C., Hiles, I. D., and Higgins, C. F. (1987).Cell 48, 297–310.

    Google Scholar 

  • Nielsen, J., Jorgensen, B. B., Hansen, F. G., Petersen, P. E., and von Meyenburg, K. (1982). EBEC Rep. 2, pp. 611–612.

  • Nielsen, J., Jorgensen, B. B., von Meyenburg, K., and Hansen, F. G. (1984).Mol. Gen. Genet. 193, 64–71.

    Google Scholar 

  • Oppenheim, S. D., and Yanofsky, C. (1980).Genetics 95, 785–795.

    Google Scholar 

  • Pedersen, S. (1984).EMBO J. 3 2895–2898.

    Google Scholar 

  • Porter, A. G. G., Brusilow, W. S. A., and Simoni, R. D. (1983).J. Bacteriol. 155, 1271–1278.

    Google Scholar 

  • Ray, P. N., and Pearson, M. L. (1974).J. Mol. Biol. 85, 163–175.

    Google Scholar 

  • Ray, P. N., and Pearson, M. L. (1975).Nature (London)253, 647–650.

    Google Scholar 

  • Russell, D. R., and Bennett, G. N. (1982).Gene 20, 231–243.

    Google Scholar 

  • Schauder, B., Blöcker, H., Frank, R., and McCarthy, J. E. G. (1987).Gene 52, 279–283.

    Google Scholar 

  • Scherer, G. F. E., Walkinshaw, M. D., Arnott, S., and Morré, D. J. (1980).Nucleic Acids Res. 8, 3895–3907.

    Google Scholar 

  • Schneider, E., and Altendorf, K. (1982).Eur. J. Biochem. 126, 149–153.

    Google Scholar 

  • Senior, A. E. (1979). InMembrane Proteins in Energy Transduction (Capaldi, R. A., ed.), Marcel Dekker, New York, pp. 233–276.

    Google Scholar 

  • Simoni, R. D. (1984). InH +-ATPase (ATP Synthase): Structure, Function, Biogenesis. The F0F1 Complex of Coupling Membranes (Papa, S., Altendorf, K., Ernster, L., and Packer, L., eds.), ICSU Press,, Adriatica Editrice, Bari, Italy, pp. 77–88.

    Google Scholar 

  • Stanssens, P., Remaut, E., and Fiers, W. (1986).Cell 44, 711–718.

    Google Scholar 

  • Steitz, J. A. (1979). InBiological Regulation and Development (Goldberger, R. F., ed.), Plenum Press, New York, pp. 349–399.

    Google Scholar 

  • Talkad, V., Schneider, E., and Kennell, D. (1976).J. Mol. Biol. 104, 299–303.

    Google Scholar 

  • Tinoco, I., Borer, P. N., Dengler, B., Levine, M. D., Uhlenbeck, O. C., Crothers, D. M., and Gralla, J. (1973).Nature New Biol. 246, 40–41.

    Google Scholar 

  • Trifonov, E. N. (1987).J. Mol. Biol. 194, 643–652.

    Google Scholar 

  • Varenne, S., Buc, I., Lloubes, R., and Lazdunski, C. (1984).J. Mol. Biol. 180, 549–576.

    Google Scholar 

  • von Meyenburg, K., Hansen, F. G., Riise, E., Bergmans, H. E. N., Meijer, M., and Messer, W. (1979).Cold Spring Harbor Symp. Quant. Biol. 43, 121–128.

    Google Scholar 

  • von Meyenburg, K., Jorgenson, B. B., Nielsen, J., Hansen, F. G., and Michelsen, O. (1982a).Tokai J. Exp. Clin. Med. Suppl. 7, 23–31.

    Google Scholar 

  • von Meyenburg, K., Jorgenson, B. B., Nielsen, J., and Hansen, F. G. (1982b).Mol. Gen. Genet. 188, 240–248.

    Google Scholar 

  • von Meyenburg, K., Nielsen, J., Jorgensen, B. B., Michelsen, O., Hansen, F. G., and Van Deurs, B. (1984a). EBEC Rep. 3, pp. 67–68.

  • von Meyenburg, K., Jorgensen, B. B., and van Deurs, B. (1984b).EMBO J. 3, 1791–1797.

    Google Scholar 

  • von Meyenburg, K., Jorgensen, B. B., Michelsen, O., Sorensen, L., and McCarthy, J. E. G. (1985).EMBO J. 4, 2357–2363.

    Google Scholar 

  • Walker, J. E., Saraste, M., and Gay, N. J. (1984).Biochim. Biophys. Acta 768, 164–200.

    Google Scholar 

  • Zuker, M., and Stiegler, P. (1981).Nucleic Acids Res. 9, 133–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, J.E.G. Expression of theunc genes inEscherichia coli . J Bioenerg Biomembr 20, 19–39 (1988). https://doi.org/10.1007/BF00762136

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762136

Key Words

Navigation