Bibliography
Newton, I. (1671).Phil. Trans. Roy. Soc. London,80, 3075; Newton, I. (1704).Opticks (Smith and Walford, London); For precise date cited, see p. 86, footnote in MacAdam, D. (1970).Sources of Color Science (M.I.T. Press, Cambridge, Massachusetts).
von Helmholtz, H. (1897).Sitzber. Preuss. Akad. Wiss., 1071.
MacAdam, D. (1947).J. Opt. Soc. Am.,32, 247; Silberstein, L., and MacAdam, D. (1945).ibid.,35, 32.
Riemann, B. (1854).Ueber die Hypothesen, Welche der Geometrie Zu Grunde liegen Gött. Nachr. (1868)13, 133. Relevant sections are quoted here: ⋯ bei einer discreten Mannigfaltigkeit das Princip der Massverhältnisse schon in dem Begriffe dieser Mannigfaltigkeit enthalten ist, bei einer stetigen aber anderswoher hinzukommen muss. Es muss also entweder das dem Raume zu Grunde liegende Wirkliche eine discrete Mannigfaltigkeit bilden, oder der Grund der Massverhältnisse ausserhalb, in darauf wirkenden bindenden Kräften, gesucht werden. ⋯ dagegen sind die Veranlassungen zur Bildung von Begriffen, deren Bestimmungsweisen eine stetige Mannigfaltigkeit bilden, im gemeinen Leben so selten, dass die Orte der Sinnengegenstände and die Farben wohl die einzigen einfachen Begriffe sind, deren Bestimmungsweisen eine mehrfach ausgedehnte Mannigfaltigkeit bilden. Häufigere Veranlassung zur Erzeugung und Ausbildung dieser Begriffe findet sich erst in der höhern Mathematik. Are these the only possibilities? Despite notable early advances in osmometrology-cf. Chaucer, G. (1478).The Summoner's Tale; (Caxton, London)-it is not clear that such sensations form a manifold of more than one dimension.
Schrödinger, E. (1920).Ann. Phys.,63, 397, 481; (1926).Müller-Pouillet's Lehrbuch der der Physik, 2nd ed., Vol. 2. Both papers are translated in part in MacAdam, D. reference 1. Their clarity and power cannot be overstated. It is a pleasure to acknowledge their profound influence throughout this work.
Le Grand, Y. (1968).Light, Colour, and Vision, 2nd ed. (Chapman and Hall, Ltd., London).
Grassmann, H. (1853).Ann. Phys. Chem. (Poggendorf),89, 69; translated by MacAdam, D. L. reference 1.
Young, T. (1802).Phil. Trans. Roy. Soc. London,92, 20.
Mitchell, D., and Rushton, W. (1971).Vision, Res.,11, 1033, 1045.
von Helmholtz, H. (1866).Physiological Optics Trans, from 3rd ed. (1866) by Southall, J. (1962). Dover, New York. Though the presence of purples on the boundary was noted by Grassman and Maxwell, this seems to be the earliest depiction of the purple plane.
Stiles, W., and Burch, J. (1958).Opt. Acta.,6, 7.
For a quite different interpretation see Le Grand, Y. reference 6, ( p. 485 et seq.
Silberstein, L. (1947).J. Opt. Soc. Am.,37, 292.
Poincaré, (18xx)Science and Method, Trans. Maitland, F. (19xx). (Dover Publications, New York);The Relativity of Space, Section II.
Arelative invariant transforms under GL(3R) or GL(3R)* with a multiplier equal to some power of the determinant-theweight. Aside from some trivial changes of specific wording, a relative invariant will serve just as well as an absolute one, to single out a minimum through (c), (d), (e). For example, Δ can be chosen to be a relative scalar of unit weight,p k, Pk relative vectors of opposite unit weight in (7.6),C(λ), H scalars of unit weight in (7.6), (7.12). This scheme would identify luminance as the volume of a parallelopiped with edges given by the color vector v, the violet limiting ray, and the ray of confusion of deuteranopes. The last two lie in the plane of zero luminance, exactly like a color component. It would also explain the origin of Schrödinger's equation (10), cf. reference 5.
Dresler, A. (1953).Trans. Illum. Eng. Soc. London,18, 141; Piéron, H. (1941).C. R. Acad. Sci.,212, 284.
MacAdam, D. (1942).J. Opt. Soc. Am.,32, 247.
Coxeter, H. (1964).Projective Geometry, (Blaisdell Pub. Co., New York).
If the alternative road of reference 21 had been taken,Δ/H would return here to absolute invariance. Note the similar structure of Schrödinger's equation (12), reference 5.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Weinberg, J.W. The geometry of colors. Gen Relat Gravit 7, 135–169 (1976). https://doi.org/10.1007/BF00762021
Issue Date:
DOI: https://doi.org/10.1007/BF00762021