Skip to main content
Log in

The geometry of colors

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. Newton, I. (1671).Phil. Trans. Roy. Soc. London,80, 3075; Newton, I. (1704).Opticks (Smith and Walford, London); For precise date cited, see p. 86, footnote in MacAdam, D. (1970).Sources of Color Science (M.I.T. Press, Cambridge, Massachusetts).

    Google Scholar 

  2. von Helmholtz, H. (1897).Sitzber. Preuss. Akad. Wiss., 1071.

  3. MacAdam, D. (1947).J. Opt. Soc. Am.,32, 247; Silberstein, L., and MacAdam, D. (1945).ibid.,35, 32.

    Google Scholar 

  4. Riemann, B. (1854).Ueber die Hypothesen, Welche der Geometrie Zu Grunde liegen Gött. Nachr. (1868)13, 133. Relevant sections are quoted here: ⋯ bei einer discreten Mannigfaltigkeit das Princip der Massverhältnisse schon in dem Begriffe dieser Mannigfaltigkeit enthalten ist, bei einer stetigen aber anderswoher hinzukommen muss. Es muss also entweder das dem Raume zu Grunde liegende Wirkliche eine discrete Mannigfaltigkeit bilden, oder der Grund der Massverhältnisse ausserhalb, in darauf wirkenden bindenden Kräften, gesucht werden. ⋯ dagegen sind die Veranlassungen zur Bildung von Begriffen, deren Bestimmungsweisen eine stetige Mannigfaltigkeit bilden, im gemeinen Leben so selten, dass die Orte der Sinnengegenstände and die Farben wohl die einzigen einfachen Begriffe sind, deren Bestimmungsweisen eine mehrfach ausgedehnte Mannigfaltigkeit bilden. Häufigere Veranlassung zur Erzeugung und Ausbildung dieser Begriffe findet sich erst in der höhern Mathematik. Are these the only possibilities? Despite notable early advances in osmometrology-cf. Chaucer, G. (1478).The Summoner's Tale; (Caxton, London)-it is not clear that such sensations form a manifold of more than one dimension.

    Google Scholar 

  5. Schrödinger, E. (1920).Ann. Phys.,63, 397, 481; (1926).Müller-Pouillet's Lehrbuch der der Physik, 2nd ed., Vol. 2. Both papers are translated in part in MacAdam, D. reference 1. Their clarity and power cannot be overstated. It is a pleasure to acknowledge their profound influence throughout this work.

    Google Scholar 

  6. Le Grand, Y. (1968).Light, Colour, and Vision, 2nd ed. (Chapman and Hall, Ltd., London).

    Google Scholar 

  7. Grassmann, H. (1853).Ann. Phys. Chem. (Poggendorf),89, 69; translated by MacAdam, D. L. reference 1.

    Google Scholar 

  8. Young, T. (1802).Phil. Trans. Roy. Soc. London,92, 20.

    Google Scholar 

  9. Mitchell, D., and Rushton, W. (1971).Vision, Res.,11, 1033, 1045.

    Google Scholar 

  10. von Helmholtz, H. (1866).Physiological Optics Trans, from 3rd ed. (1866) by Southall, J. (1962). Dover, New York. Though the presence of purples on the boundary was noted by Grassman and Maxwell, this seems to be the earliest depiction of the purple plane.

  11. Stiles, W., and Burch, J. (1958).Opt. Acta.,6, 7.

    Google Scholar 

  12. For a quite different interpretation see Le Grand, Y. reference 6, ( p. 485 et seq.

    Google Scholar 

  13. Silberstein, L. (1947).J. Opt. Soc. Am.,37, 292.

    Google Scholar 

  14. Poincaré, (18xx)Science and Method, Trans. Maitland, F. (19xx). (Dover Publications, New York);The Relativity of Space, Section II.

  15. Arelative invariant transforms under GL(3R) or GL(3R)* with a multiplier equal to some power of the determinant-theweight. Aside from some trivial changes of specific wording, a relative invariant will serve just as well as an absolute one, to single out a minimum through (c), (d), (e). For example, Δ can be chosen to be a relative scalar of unit weight,p k, Pk relative vectors of opposite unit weight in (7.6),C(λ), H scalars of unit weight in (7.6), (7.12). This scheme would identify luminance as the volume of a parallelopiped with edges given by the color vector v, the violet limiting ray, and the ray of confusion of deuteranopes. The last two lie in the plane of zero luminance, exactly like a color component. It would also explain the origin of Schrödinger's equation (10), cf. reference 5.

  16. Dresler, A. (1953).Trans. Illum. Eng. Soc. London,18, 141; Piéron, H. (1941).C. R. Acad. Sci.,212, 284.

    Google Scholar 

  17. MacAdam, D. (1942).J. Opt. Soc. Am.,32, 247.

    Google Scholar 

  18. Coxeter, H. (1964).Projective Geometry, (Blaisdell Pub. Co., New York).

    Google Scholar 

  19. If the alternative road of reference 21 had been taken,Δ/H would return here to absolute invariance. Note the similar structure of Schrödinger's equation (12), reference 5.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinberg, J.W. The geometry of colors. Gen Relat Gravit 7, 135–169 (1976). https://doi.org/10.1007/BF00762021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762021

Keywords

Navigation