Advertisement

General Relativity and Gravitation

, Volume 7, Issue 1, pp 127–133 | Cite as

Bacterial chemotaxis: A survey

  • Ralph Schiller
Article

Abstract

Chemotactic bacteria likeE. coli respond to chemical gradients. The translational movements of individual cells can be traced. These are coupled to the rotation of the cell body. Both types of motions are regular in temporal attractant or repellent gradients. A corresponding regularity is observed for bacterial populations in spatial gradients. The distribution of a bacterial population is space and time may be described by a diffusion equation linked to the motions of single cells.

Keywords

Single Cell Cell Body Individual Cell Diffusion Equation Differential Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pfeffer, W. (1888).Utersuch. Bot. Inst. Tubingen.,2, 582.Google Scholar
  2. 2.
    Engelmann, T. W. (1881).Arch. Gesamte Physiol. Pflugers,26, 537.Google Scholar
  3. 3.
    Beijerinck, M. W. (1893).Zentr. Bakteriol Parasitenk.,14, 827.Google Scholar
  4. 4.
    Clayton, R. K. (1953).Arch. Mikrobiol.,19, 141.Google Scholar
  5. 5.
    Schlegel, H. -G. (1956).Arch. Protestenkd.,101, 69.Google Scholar
  6. 6.
    Schrammeck, J. (1934).Beitr. Biol. Pflanz.,22, 315.Google Scholar
  7. 7.
    Aquilar, M., and Stiles, W. S. (1954).Optica Acta,1, 59.Google Scholar
  8. 8.
    Adler, J. (1966).Science,153, 708.Google Scholar
  9. 9.
    Adler, J., and Dahl, M. M. (1967).J. Gen. Microbiol.,46, 161.Google Scholar
  10. 10.
    Berg, H., and D. A. Brown. (1972).Nature (London),239, 500.Google Scholar
  11. 11.
    Silverman, M., and M. Simon. (1974).Nature (London),249, 73.Google Scholar
  12. 12.
    Larsen, S. H., Reader, R. W., Kort, G. N., Tso, W. -W., and Adler, J. (1974).Nature (London),249, 74.Google Scholar
  13. 13.
    Berg, H. C. (1974).Nature (London),249, 77.Google Scholar
  14. 14.
    Dahlquist, F. W., Lovely, P., and Koshland, D. E., Jr. (1972).Nat. New Biol.,236, 120.Google Scholar
  15. 15.
    Keller, E. F., and Segel, L. A. (1971).J. Theor. Biol.,30, 225.Google Scholar
  16. 16.
    Segel, L. A., and Jackson, J. (1973).J. Mechanochem. Cell Motility,2, 25.Google Scholar
  17. 17.
    Lapidus, I. R., and Schiller, R. (1974).Biophys. J.,14, 825.Google Scholar
  18. 18.
    Mesibov, R., Ordal, G. W., and Adler, J. (1973).J. Gen. Physiol.,62, 203.Google Scholar
  19. 19.
    Lapidus, I. R. and Schiller, R. (Unpublished work).Google Scholar
  20. 20.
    Heppel, L. A. (1967).Science,156, 1451.Google Scholar
  21. 21.
    Macnab, R. M., and Koshland, D. E., Jr. (1972)Proc. Nat. Acad. Sci. USA.,69, 2509.Google Scholar
  22. 22.
    Brown, D. A., and Berg, H. C. (1974).Proc. Nat. Acad. Sci. USA,71, 1388.Google Scholar
  23. 23.
    Scribner, T. L., and Segel, L. A., and Rogers, E. H. (1974).J. Theor. Biol.,46, 189.Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Ralph Schiller
    • 1
  1. 1.Department of PhysicsStevens Institute of TechnologyHoboken

Personalised recommendations