General Relativity and Gravitation

, Volume 6, Issue 4, pp 361–385 | Cite as

A complex minkowski space approach to twistors

  • R. O. Hansen
  • Ezra T. Newman
Research Articles


This paper is basically a review of known results in twistor theory. Its value is intended to lie in the connections presented between twistor concepts and structures in complex Minkowski space. The relationship of twistor theory to complex null infinity and a new proof of the Kerr theorem are presented; these results are to some extent original.


Differential Geometry Minkowski Space Space Approach Twistor Theory Null Infinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Penrose, R. (1967).J. Math. Phys.,8, 345.Google Scholar
  2. 2.
    Penrose, R. (1968).Int. J. Theor. Phys.,1, 61.Google Scholar
  3. 3.
    Penrose, R. (1969).J. Math. Phys.,10, 38.Google Scholar
  4. 4.
    Penrose, R. and MacCallum, M.A.H. (1972).Phys. Lett.,C6, 241.Google Scholar
  5. 5.
    Newman, E.T. and Janis, A. I. (1965).J. Math. Phys.,6, 915.Google Scholar
  6. 6.
    Newman, E.T. (1973).J. Math. Phys.,14, 102.Google Scholar
  7. 7.
    Newman, E.T. (1973).J. Math. Phys.,14, 774.Google Scholar
  8. 8.
    Newman, E.T. and Winicour, J. (1974).J. Math. Phys.,15, 426.Google Scholar
  9. 9.
    Lind, R.W. and Newman, E.T. (1974).J. Math. Phys.,15, 1103.Google Scholar
  10. 10.
    Newman, E.T. and Winicour, J. (1974).J. Math. Phys.,15, 1113.Google Scholar
  11. 11.
    Penrose, R. (1967). InBattelle Rencontres, (eds. DeWitt, C.M. and Wheeler, J.A.), (Benjamin, New York).Google Scholar
  12. 12.
    Penrose, R. (1965).Proc. Roy. Soc.,A284, 159.Google Scholar
  13. 13.
    Kobayashi, S. and Nomizu, K. (1969).Foundations of Differential Geometry, Vol. II, (Interscience, New York).Google Scholar
  14. 14.
    Penrose, R. (1960).Ann. Phys.,10, 171.Google Scholar
  15. 15.
    Pirani, F.A.E. (1965). InLectures on General Relativity, Brandeis Summer Institute in Theoretical Physics, 1964, Vol. I, (Prentice-Hall, Englewood Cliffs, New Jersey).Google Scholar
  16. 16.
    Aronson, B. and Newman, E.T. (1973).J. Math. Phys.,13, 1847.Google Scholar
  17. 17.
    Newman, E.T. and Penrose, R. (1966).J. Math. Phys.,7, 863.Google Scholar
  18. 17.
    Courant, R. and Hilbert, D. (1962).Methods of Mathematical Physics, Vol. II, (Interscience, New York).Google Scholar
  19. 19.
    Penrose, R. (1972). InQuantum Theory and Beyond, (ed. Bastin, E.T.), (Cambridge University Press).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • R. O. Hansen
    • 1
  • Ezra T. Newman
    • 1
  1. 1.Department of PhysicsUniversity of PittsburghPittsburgh

Personalised recommendations