General Relativity and Gravitation

, Volume 5, Issue 6, pp 621–642 | Cite as

The neutrino energy-momentum tensor and the Weyl equations in curved space-time

  • Ian M. Anderson
Research Articles


In general, a first order Lagrangian gives rise to second order Euler-Lagrange equations. However, there are important examples where the associated Euler-Lagrange equations are of first order only, the Weyl neutrino equations being of this type. In this paper we therefore consider first order spinor Lagrangians which give rise to firstorder Euler-Lagrange equations. Specifically, the most general first order spinor field equations of rank one in curved space-time which are derivable from a first order Lagrangian of the same type are explicitly constructed. Subject to a certain restriction, the Weyl neutrino equation is the only possibility. Furthermore, if the spinor field satisfies the Weyl neutrino equation, then the associated energy momentum tensor is the conventional neutrino energymomentum tensor.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergmann, P.G. (1959). Two-Component Spinors in General Relativity,Phys. Rev.,107, 624–629.Google Scholar
  2. 2.
    Brill, D. and Wheeler, J.A. (1957). Interaction of Neutrinos and Gravitational Fields,Rev. Mod. Phys.,29, 465–479.Google Scholar
  3. 3.
    Geroch, R. (1968). Spinor Structure of Space-Time in General Relativity. I,J. Math. Phys.,9, 1739–1744.Google Scholar
  4. 4.
    Griffiths, J.B. (1972). Gravitational Radiation and Neutrinos,Commun. Math. Phys.,28, 295–299.Google Scholar
  5. 5.
    Infeld, L. and van der Waerden, B.L. (1933). Der Wellengleichung des Elektrons in der Allgemeinen Relativitätstheorie,Preuss. Sitzungsber. Akad. Wiss. Phys. Math. Kl., 380–401.Google Scholar
  6. 6.
    Kuchowicz, B. (1974). Neutrinos in General Relativity: Four (?) Levels of Approach,Gen. Ret. GraV.,5, 201.Google Scholar
  7. 7.
    Lee, T.D. and Yang, C.N. (1957). Parity Nonconservation and a Two-Component Theory of the Neutrino,Phys. Rev.,105, 1671–1675.Google Scholar
  8. 8.
    Lovelock, D. (1969). The Uniqueness of the Einstein Field Equations in a Four-Dimensional Space,Arch. Ration. Mech. Anal.,33, 54–70.Google Scholar
  9. 9.
    Pirani, F.A.E. (1965).Lectures on General Relativity, Brandeis Summer Institute in Theoretical Physics, Vol. 1, pp. 305–330.Google Scholar
  10. 10.
    Rund, H. (1966). Variational Problems Involving Combined Tensor Fields,Abh. Math. Semin. Univ. Hamburg,21, 106–136.Google Scholar
  11. 11.
    Schmutzer, E. (1968).Relativistische Physik, (Akademische Verlaggesellschaft, Leipzig).Google Scholar
  12. 12.
    Synge, J.L. (1965).Relativity: The Special Theory, (North-Holland, Amsterdam).Google Scholar
  13. 13.
    Wainwright, J. (1968). Invariance Properties of Spinor Lagrangians. I,Tensor, N.S.,19, 217–232.Google Scholar
  14. 14.
    Wainwright, J. (1968). Invariance Properties of Spinor Lagrangians. II,Tensor N.S.,19, 265–274.Google Scholar
  15. 15.
    Wainwright, J. (1971). Geometric Properties of the Neutrino Field in Curved Space-Time,J. Math. Phys.,12, 828–835.Google Scholar
  16. 16.
    Weyl, H. (1929). Elektron und Gravitation. I,Z. Physik,56, 330–352.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1974

Authors and Affiliations

  • Ian M. Anderson
    • 1
  1. 1.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations