Advertisement

General Relativity and Gravitation

, Volume 17, Issue 5, pp 509–513 | Cite as

Comment on the Bianchi type-V vacuum model

  • D. Lorenz-petzold
  • V. Joseph
Research Articles

Abstract

It is shown that the nonlocally rotationally symmetric Bianchi type-V vacuum solution recently discussed by Nayak is identical, after trivial transformations, with the solution found some years ago by Joseph. In addition some calculations and remarks concerning the integration of the null geodesic equations are given.

Keywords

Differential Geometry Vacuum Solution Geodesic Equation Vacuum Model Trivial Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations (VEB, Deutscher Verlag der Wissenschaften, Berlin).Google Scholar
  2. 2.
    Karlhede, A. (1980).Gen. Rel. Grav.,12, 963.Google Scholar
  3. 3.
    MacCallum, M. A. H. (1983). InUnified Field Theories of More than 4 Dimensions, V. De Sabbata and E. Schmutzer, eds. (World Scientific, Singapore).Google Scholar
  4. 4.
    Nayak, B. K. (1983).Gen. Rel. Grav.,15, 1067.Google Scholar
  5. 5.
    Misner, C. W. (1968).Astrophys. J.,151, 431.Google Scholar
  6. 6.
    Joseph, V. (1966).Proc. Cambridge Philos. Soc.,62, 87.Google Scholar
  7. 7.
    Lorenz, D. (1981).Gen. Rel. Grav.,13, 795.Google Scholar
  8. 8.
    Lorenz, D. (1982).Gen. Rel. Grav.,14, 691.Google Scholar
  9. 9.
    Sneddon, G. E. (1976).J. Phys. A: Math. Gen.,9, 229.Google Scholar
  10. 10.
    Demaret, J. (1980).Phys. Lett.,95B, 413.Google Scholar
  11. 11.
    Demaret, J. (1981).Phys. Lett.,98B, 469.Google Scholar
  12. 12.
    Urankar, A. (1970).Ann. Phys. (Leipzig),24, 110.Google Scholar
  13. 13.
    Schmitt, J. H. M. M. (1960).Astron. Astrophys.,87, 236.Google Scholar
  14. 14.
    Novikov, I. D. (1968).Astron. Zh.,45, 538 [Sov. Astron. J.,12, 427 (1968)].Google Scholar
  15. 15.
    Doroshkevich, A. G., Lukash, V. N., and Novikov, I. D. (1974).Astron. Zh.,51, 940 [Sov. Astron. J.,18, 554 (1975)].Google Scholar
  16. 16.
    Zel'dovich, Ya. B., and Novikov, I. D. (1983).Relativistic Astrophysics, Vol. 2 (University of Chicago Press, Chicago).Google Scholar
  17. 17.
    Grishchuk, L. P., Doroshkevich, A. G., and Novikov,I. D. (1968).Zh. Eksp. Teor. Fiz.,55, 2281 [Sov.Phys.-JETP,28, 1210 (1968)].Google Scholar
  18. 18.
    Barrow, J. D., Juskiewicz, R., and Sonoda, D. H. (1983).Nature,305, 397.Google Scholar
  19. 19.
    Tolman, B. W., and Matzner, R. A. (1984).Proc. R. Soc. London A,392, 391.Google Scholar
  20. 20.
    Fabbri, R., Pucacco, G., and Ruffini, R. (1984).Astron. Astrophys.,135, 53.Google Scholar
  21. 21.
    Roy, S. R., and Singh, J. P. (1983).Astrophys. Space Sci.,96, 303.Google Scholar
  22. 22.
    Shikin, I. S. (1983).GR 10, Padova, Proc. 1,345.Google Scholar
  23. 23.
    Matravers, D. R. (1983).GR 10, Padova, Proc. 2,850.Google Scholar
  24. 24.
    Lorenz-Petzold, D. (1984).Math. Proc. Cambridge Philos. Soc.,95, 175.Google Scholar
  25. 25.
    Lorenz-Petzold, D. (1984).Math. Proc. Cambridge Philos. Soc.,96, 183.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • D. Lorenz-petzold
    • 1
  • V. Joseph
    • 2
  1. 1.Fakultät für PhysikUniversität KonstanzKonstanzGermany
  2. 2.Department of MathematicsKing's CollegeLondon WC2England

Personalised recommendations